

Fast, Affordable & Convenient!

FDA-Approved Drug Library Mini (96-well plate, 10 μL/well)

Cat. No. : HY-L022M

Introduction:

FDA-Approved Drug Library is a useful tool that allows researchers to discover novel targets of old drugs and to find new functions of the known targets. The FDA-Approved Drug Library Mini is designed with a smaller size (10 μL) and simplified packaging (96-well microplate with peelable foil seal) for research convenience.

Advantages :

1. Easily peelable foil seal makes the screening process easier and faster.

- 2. Lower price, more compounds.
- 3. Avoid multiple and uneven dispensing.
- 4. Reduce risks of product cross-contamination.
- 5. Avoid reduced activity due to long-term storage.

FDA-Approved Drug Library Mini

Size	10 μL in DMSO
Package	96-well microplate with peelable foil seal
Delivery Date	Within three days
Price Per Set	Low
Preparation For Use	Tear off the seal film on the microplate

FDA-Approved Drug Library (Cat. No.: HY-L022)

30, 50, 100, and 250 μL in DMSO

96-Well Format Sample Storage Tube With Screw Cap

About one month

High

If there is no robot, each tube needs to be manually opened

MedChemExpress LLC

Tel: 609-228-6898

E-mail: sales@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Small Molecule Immuno-Oncology Compound Library

Cat. No. : HY-L031

Immuno-Oncology is an innovative approach that uses the body's immune system to help fight cancer.

In 2018, two Immuno-oncology scientists won the **Nobel Prize in Physiology or Medicine** for their discovery of cancer therapy by inhibition of negative immune regulation.

Though most of these breakthrough medicines in immuno-oncology are monoclonal antibodies that block protein-protein interactions, **small-molecule immunotherapy** brings bright prospects to cancer treatment. Compare with therapeutic antibodies, small molecule immuno-oncology agents usually have better oral bioavailability, higher tissue and tumor penetration, reasonable half-lives, etc.

MCE small molecule immuno-oncology screening compounds target a wide variety of proteins/receptors that may be useful in the cancer immunotherapy, such as PD1/PD-L1, RORγt, Chemokine receptor, STING, IDO, TLR, etc.

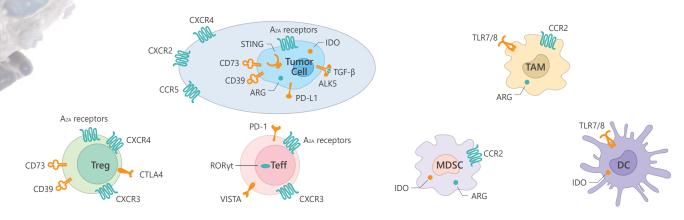


Figure 1. Potential targets for small molecules in cancer immunotherapy.

Target	PD1/PD-L1	RORyt	Chemokine Receptor	STING	IDO	TLR
Effect Type	Inhibitor	Agonist	Antagonist	Agonist	Inhibitor	Agonist
Mechanism of Small Molecules	Decrease Immune Suppression	Increase Immune Activation	Decrease Immune Suppression	Increase Immune Activation	Decrease Immune Suppression	Increase Immune Activation
Targeted Immune System	Adaptive	Adaptive	Adaptive	Innate	Tumor microenvironment	Innate

References:

McNutt M, Cancer immunotherapy. Science. 2013 Dec 20;342(6165):1417.

Cheng B et al., Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem. 2018 Sep 5;157:582-598.

Inhibitors • Agonists • Screening Libraries www.MedChemExpress.com