1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-155747
    FDW028 Inhibitor 99.51%
    FDW028 是一种强效、高选择性的 FUT8 抑制剂。FUT8 通过伴侣介导的自噬 (CMA) 途径去聚焦化和促进 B7-H3 的溶酶体降解,显示出强大的抗肿瘤活性。FUT8 可用于转移性结直肠癌 (mCRC) 的研究。
    FDW028
  • HY-N0022
    Isoacteoside

    异麦角甾苷

    Inhibitor 99.73%
    Isoacteoside 是天然产物,能显著地抑制糖基化终产物的形成。Isoacteoside 调节 AKT/PI3K/m-TOR/NF-κB 信号通路,诱导 OVCAR-3 细胞凋亡 (apoptosis)。Isoacteoside 具有抗肿瘤、抗炎、抗肥胖和神经保护作用。
    Isoacteoside
  • HY-155864
    AJ2-30 Inhibitor 99.92%
    AJ2-30 是一种 SLCl5A4 抑制剂。AJ2-30 可抑制内溶酶体 TLR7-9 介导的 mTOR 激活。AJ2-30 可阻断内源性 NOD 信号传导。AJ2-30 可用于炎症研究。
    AJ2-30
  • HY-Y0524
    Ethanolamine

    乙醇胺; 2-羟基乙胺

    Activator 99.98%
    Ethanolamine 是一种生物胺,是动物细胞膜主要磷脂磷脂酰乙醇胺的基本组成成分。Ethanolamine 激活 mTORSTAT-3 通路,调节线粒体功能和磷脂合成。Ethanolamine 具有增强细胞增殖和修复组织损伤的活性。Ethanolamine 可用于肝损伤、心肌缺血再灌注损伤等疾病的研究。
    Ethanolamine
  • HY-124760
    hSMG-1 inhibitor 11e Inhibitor 99.94%
    hSMG-1 inhibitor 11e 是一种有效的选择性的 hSMG-1 激酶抑制剂,其 IC50 值 <0.05 nM。hSMG-1 inhibitor 11e 对 hSMG-1 的选择性比 mTOR (IC50 为 45 nM),PI3Kα/γ (IC50 为 61 nM 和 92 nM) 和 CDK1/CDK2 (IC50 为 32 μM 和 7.1 μM) 高 900 倍。
    hSMG-1 inhibitor 11e
  • HY-15177
    PF-04691502 Inhibitor 99.91%
    PF-04691502是有效和选择性的 PI3KmTOR 的抑制剂。 PF-04691502与人PI3Kα,β,δ,γ和mTOR结合的 Ki 分别为1.8,2.1,1.6,1.9和16 nM。
    PF-04691502
  • HY-P9933
    Dinutuximab

    地努图希单抗

    Inhibitor ≥99.0%
    Dinutuximab (APN-311) 是一种嵌合的人鼠抗 GD2 单克隆抗体。Dinutuximab 能与细胞表面 GD2 结合,引发抗体依赖的细胞介导的细胞毒性作用和补体依赖的细胞毒性作用,促使肿瘤消退。Dinutuximab 能抑制肿瘤细胞生长、侵袭和迁移,并诱导细胞凋亡 (apoptosis)。Dinutuximab 可用于神经母细胞瘤和乳腺癌等肿瘤的研究。
    Dinutuximab
  • HY-50710
    KU-0063794 Inhibitor 99.67%
    KU-0063794 是一种有效的,特异性的 mTOR 抑制剂,能够抑制 mTORC1mTORC2IC50 值均约为 10 nM。
    KU-0063794
  • HY-P1410B
    D-GsMTx4 Inhibitor 99.59%
    D-GsMTx4 是一种蜘蛛肽和 GsMTx4 (HY-P1410) 的 D 对映体。D-GsMTx4 抑制机械敏感离子通道 Piezo2。D-GsMTx4 抑制 [Ca2+]i 升高。D-GsMTx4 抑制 mTORPI3K-Akt 信号通路。D-GsMTx4 抑制机械性异常性疼痛和热痛觉过敏。D-GsMTx4 可用于机械应力、慢性疼痛和特发性肺纤维化研究。
    D-GsMTx4
  • HY-N0281
    Daphnetin

    瑞香素

    Inhibitor 99.77%
    Daphnetin (7,8-dihydroxycoumarin) 是一种香豆素衍生物,可来源于 Genus Daphne,是一种口服有效的蛋白激酶抑制剂 (protein kinase),对 EGFR、PKA 和 PKCIC50 值分别为 7.67 μM、9.33 μM 和 25.01 μM。Daphnetin 触发活性氧诱导的细胞凋亡 (apoptosis) 和通过调节 AMPK/Akt/mTOR 途径诱导细胞保护性自噬(autophagy)。Daphnetin 具有抗炎活性,并抑制 TNF-α、IL-1β、ROS 和 MDA 的产生。Daphnetin 具有杀疟活性。瑞香素可用于类风湿关节炎、癌症和抗疟疾研究。
    Daphnetin
  • HY-114384B
    NV-5138 hydrochloride Activator ≥98.0%
    NV-5138 hydrochloride 是一种亮氨酸类似物,是首个具有选择性的、口服活性的脑内的 mTORC1 的激动剂,与 Sestrin2 结合。NV-5138 hydrochloride 可用于抗抑郁的生物研究。
    NV-5138 hydrochloride
  • HY-12513
    Samotolisib Inhibitor 99.27%
    Samotolisib (LY3023414) 有效且选择性地抑制 PI3KαPI3KβPI3KδPI3KγDNA-PK,和 mTORIC50 分别为 6.07 nM,77.6 nM,38 nM,23.8 nM,4.24 nM,和 165 nM。在低纳摩尔浓度下,Samotolisib 有效抑制 mTORC1/2
    Samotolisib
  • HY-116522
    AR420626 98.29%
    AR420626 是游离脂肪酸受体3 (FFAR3) 的选择性激动剂 (IC50=117 nM)。AR420626 具有抗炎,抗癌和抗糖尿病活性。AR420626 通过抑制 nAChR 介导的神经通路,来改善神经源性腹泻疾病。AR420626 抑制 HepG2 异种移植物的生长,并通过诱导细胞凋亡 (apoptosis) 抑制肝癌细胞增殖。AR420626 还能够抑制过敏性哮喘和湿疹并具有激活 GPR41 增加 Ca2+ 信号介导的葡萄糖摄取和改善糖尿病的能力。
    AR420626
  • HY-13246
    Apitolisib Inhibitor 99.29%
    Apitolisib (GDC-0980; GNE 390; RG 7422) 是一种口服有效的 PI3KmTOR (TORC1/2) 激酶抑制剂,抑制 PI3Kα/PI3Kβ/PI3Kδ/PI3Kγ 的活性,IC50 值为 5 nM/27 nM/7 nM/14 nM。 抑制mTORKi 为 17 nM。
    Apitolisib
  • HY-12868
    Bimiralisib Inhibitor 98.62%
    Bimiralisib (PQR309) 是一种有效的,可渗透脑的,PI3K/mTOR 抑制剂,抑制 PI3Kα, PI3Kδ, PI3Kβ, PI3KγmTORIC50 分别为 33 nM,451 nM,661 nM,708 nM 和 89 nM。Bimiralisib 是 mTORC1mTORC2 抑制剂。
    Bimiralisib
  • HY-N0837
    Veratramine

    黎芦碱

    Inhibitor 99.84%
    Veratramine (NSC17821; NSC23880) 是一种口服有效的 PI3K/Akt/mTOR 信号通路抑制剂及 SIGMAR1 调节剂。Veratramine 诱导肿瘤细胞自噬性凋亡 (autophagy),阻滞细胞周期于 G0/G1 期,并抑制上皮-间质转化 (EMT) 相关蛋白减少肿瘤迁移。Veratramine 通过抑制 SIGMAR1 与 NMDAR 结合及 NMDAR Ser896 位点磷酸化,减轻神经病变模型中脊髓和坐骨神经病理损伤。Veratramine 具有抗肿瘤增殖、诱导凋亡 (apoptosis、抑制炎症及神经保护活性,可用于肝癌、骨肉瘤等癌症及糖尿病周围神经病变的研究。
    Veratramine
  • HY-N0486S9
    L-Leucine-d3

    L-亮氨酸-d3

    Activator 99.93%
    L-Leucine-d3 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d<sub>3</sub>
  • HY-16962
    CC-115 Inhibitor 99.82%
    CC-115 是一种有效的双重 DNA-PKmTOR 抑制剂,IC50 分别为 13 nM 和 21 nM。CC-115 阻断 mTORC1mTORC2 信号通路。
    CC-115
  • HY-N9481
    Lipoteichoic acid

    脂磷壁酸

    Inhibitor
    Lipoteichoic acid 是口服有效的抗炎剂和抗肿瘤剂。Lipoteichoic acid 是革兰氏阳性菌中重要的免疫分子,可通过诱导 C3 和抑制 CD55 来激活补体系统。Lipoteichoic acid 通过 PI3K/Akt/mTOR 通路调控巨噬细胞自噬 (autophagy)。Lipoteichoic acid 在小鼠中可诱导肺损伤。Lipoteichoic acid 可抑制黑色素的产生。
    Lipoteichoic acid
  • HY-N0486S1
    L-Leucine-13C

    L-亮氨酸 13C

    Activator 99.4%
    L-Leucine-13C 是一种 13C 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-<sup>13</sup>C
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.