1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-10115A
    PI-103 Hydrochloride Inhibitor 98.55%
    PI-103 Hydrochloride 是一种有效的 PI3K mTOR 抑制剂,抑制 p110αp110βp110δp110γmTORC1mTORC2IC50 分别为 8 nM,88 nM,48 nM,150 nM,20 nM 和 83 nM。PI-103 Hydrochloride 也可抑制DNA-PK,IC50 为 2 nM。PI-103 Hydrochloride 诱导自噬 (autophagy)
    PI-103 Hydrochloride
  • HY-N0486S8
    L-Leucine-13C6,15N

    L-亮氨酸-13C6,15N

    Activator 99.90%
    L-Leucine-13C6,15N 是带有 13C 标记和 15N 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-<sup>13</sup>C<sub>6</sub>,<sup>15</sup>N
  • HY-107365
    PQR530 Inhibitor 99.85%
    PQR530 是一种有效,ATP竞争性的,具有口服活性,可透过血脑屏障的,PI3K/mTORC1/2 双重抑制剂,对于 PI3KαmTOR (分别为 0.84 和 0.33 nM) 的 Kd 为亚摩尔。具有抗肿瘤活性。
    PQR530
  • HY-13334
    BGT226 maleate Inhibitor 99.92%
    BGT226 (NVP-BGT226 maleate) 是一种 PI3K (针对 PI3KαPI3KβPI3KγIC50分别是4 nM,63 nM,38 nM ) /mTOR 双抑制剂,对人头颈癌细胞具有较强的生长抑制活性。
    BGT226 maleate
  • HY-W016412
    Coenzyme Q0

    辅酶Q0

    Inhibitor 99.88%
    Coenzyme Q0 (CoQ0) 是一种口服有效的醌类化合物,可以从 Antrodia cinnamomea 中得到。Coenzyme Q0 诱导细胞凋亡 (apoptosis) 和自噬 (autophagy),抑制 HER-2/AKT/mTOR 信号通路来增强细胞凋亡和自噬机制。Coenzyme Q0 调节 NFκB/AP-1 的激活,并增强 Nrf2 的稳定,减轻炎症和氧化还原失衡。Coenzyme Q0 通过下调 MMP-9/NF-κB 和上调 HO-1 信号通路具有抗血管生成活性。
    Coenzyme Q0
  • HY-14581
    Palomid 529 Inhibitor 99.37%
    Palomid 529 是一种有效的 mTORC1mTORC2 复合体抑制剂。
    Palomid 529
  • HY-16962A
    CC-115 hydrochloride Inhibitor 98.03%
    CC-115 hydrochloride 是一种有效的双重 DNA-PKmTOR 抑制剂,IC50 分别为 13 nM 和 21 nM。CC-115 阻断 mTORC1mTORC2 信号通路。
    CC-115 hydrochloride
  • HY-156671
    RMC-4998 Inhibitor 99.31%
    RMC-4998 是一种口服有效的靶向活性或 GTP 结合状态的 KRASG12C 突变体抑制剂。RMC-4998 可以与细胞内 CYPA 和激活状态下的 KRASG12C 突变体形成三重复合物,IC50 值为 28 nM。RMC-4998 可以抑制 KRASG12C 突变癌细胞中的 ERK 信号传导并诱导细胞凋亡 (apoptosis)。RMC-4998 可用于肿瘤的研究。
    RMC-4998
  • HY-N2541
    Gymnemic acid I Inhibitor 98.84%
    Gymnemic acid I 是一种可在匙羹藤中发现的具有生物活性的三萜皂苷。Gymnemic acid I 是一种抗甜味抑制剂,通过作用于人类甜味受体 1 型受体 2 (T1R2) 和 T1R3。Gymnemic acid I 是一种核糖体蛋白质生物合成抑制剂。Gymnemic acid I 具有抗糖尿病功效。Gymnemic acid I 通过抑制 mTOR 的磷酸化活性,诱导自噬 (autophagy) 保护的 MIN-6 细胞在高糖应激下免于凋亡 (apoptosis)。
    Gymnemic acid I
  • HY-10811
    GNE-493 Inhibitor 99.81%
    GNE-493 是一种有效的,选择性的 PI3K/mTOR 抑制剂,抑制 PI3KαPI3KβPI3KδPI3KγmTORIC50 为 3.4 nM,12 nM,16 nM,16 nM 和 32 nM。
    GNE-493
  • HY-15248
    GDC-0349 Inhibitor 98.02%
    GDC-0349 是一种有效的,ATP竞争性的选择性 mTOR 抑制剂,Ki 值为 3.8 nM。GDC-0349 抑制 mTORC1mTORC2 复合体。
    GDC-0349
  • HY-100398
    PF-04979064 Inhibitor 99.54%
    PF-04979064 是一种有效的选择性 PI3K/mTOR 双重激酶抑制剂,抑制 PI3KαmTORKi 分别为 0.13 nM 和 1.42 nM。
    PF-04979064
  • HY-N4247
    Kuwanon G

    桑黄酮 G

    Inhibitor 99.52%
    Kuwanon G 是一种黄酮类化合物,为蛙皮素受体 (bombesin receptor) 拮抗剂。Kuwanon G 具有杀菌、抗肿瘤、抗炎抗氧化、抗动脉粥样硬化和神经保护等多种活性。Kuwanon G 对口腔病原体具有较强的抗菌活性,尤其是对致龋菌和牙周病原菌。Kuwanon G 能诱导肿瘤细胞凋亡 (apoptosis),抑制增殖、迁移和侵袭。Kuwanon G 可用于胃癌、动脉粥样硬化等疾病的研究。
    Kuwanon G
  • HY-N0486S2
    L-Leucine-13C6

    L-亮氨酸-13C6

    Activator ≥98.0%
    Leucine-13C6 是一种 13C 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-<sup>13</sup>C<sub>6</sub>
  • HY-100026
    PQR620 Inhibitor 98.01%
    PQR620 是一种有效的,具有口服活性的可透过血脑屏障的选择性 mTORC1/2 抑制剂。
    PQR620
  • HY-15272
    WAY-600 Inhibitor 99.86%
    WAY-600 是有效,ATP 竞争型,选择性的 mTOR 抑制剂,抑制重组 mTOR 酶的 IC50 值为 9 nM。WAY-600 阻断 mTOR 复合物 1/2 (mTORC1/2) 组装和激活。
    WAY-600
  • HY-159480
    AD1058 Inhibitor 98.11%
    AD1058 是一种具有口服活性、选择性和血脑屏障通透性的 ATR 抑制剂 (IC50: 1.6 nM)。AD1058 具有抗癌活性,能抑制肿瘤细胞增殖、诱导细胞周期阻滞和凋亡 (apoptosis)。AD1058 可用于晚期恶性肿瘤和脑转移方面的研究。
    AD1058
  • HY-111508
    PI3K/mTOR Inhibitor-2 Inhibitor 99.10%
    PI3K/mTOR Inhibitor-2 是一种有效的双重 pan-PI3K/mTOR 抑制剂,抑制 PI3Kα/PI3Kβ/PI3Kδ/PI3KγIC50 值为 3.4/34/16/1 nM,mTORIC50 值为 4.7 nM。抗肿瘤活性。
    PI3K/mTOR Inhibitor-2
  • HY-W130610
    Stearamide

    硬脂酰胺

    Activator
    Stearamide 是一种初级脂肪酸酰胺。Stearamide 具有细胞毒性和鱼类毒性。
    Stearamide
  • HY-N6843
    Arnicolide D

    山金车内酯 D

    Inhibitor 99.69%
    Arnicolide D 是一种可以从 Centipeda minima 中分离得到的倍半萜内酯。Arnicolide D 对肿瘤细胞具有细胞毒性,可诱导肿瘤细胞细胞周期阻滞、凋亡 (apoptosis) 和胀亡 (oncosis)。Arnicolide D 具有抗肿瘤的活性。
    Arnicolide D
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.