1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-11042
    GNE-477 Inhibitor 98.75%
    GNE-477 是一种高效的双重 PI3K (IC50=4 nM)/mTOR (Ki=21 nM) 抑制剂。
    GNE-477
  • HY-N0486R
    L-Leucine (Standard)

    L-亮氨酸 (Standard)

    Activator
    L-Leucine (Standard) 是 L-Leucine 的分析标准品。本产品用于研究及分析应用。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine (Standard)
  • HY-118717
    mTOR inhibitor WYE-28 Inhibitor 99.75%
    mTOR inhibitor WYE-28 (compound 28) 是 mTOR 选择性抑制剂 (IC50=0.08 nM)。也抑制 PI3KαIC50 为 6 nM。mTOR inhibitor WYE-28 在裸鼠微粒体中的代谢时间 (T1/2) 为 13 min。
    mTOR inhibitor WYE-28
  • HY-151622
    PI3K/mTOR Inhibitor-11 Inhibitor 98.74%
    PI3K/mTOR Inhibitor-11 是一种具有口服活性的 PI3K/mTOR 抑制剂 (对 PI3Kα、PI3Kδ 和 mTORIC50 分别为 3.5、4.6 和 21.3 nM)。PI3K/mTOR Inhibitor-11 通过抑制 AKT 和 S6 蛋白的磷酸化来调节 PI3K/AKT/mTOR 信号通路。PI3K/mTOR Inhibitor-11 可用于癌症研究。
    PI3K/mTOR Inhibitor-11
  • HY-N6932
    Voacamine

    老刺木胺

    99.64%
    Voacamine 是一种具有大麻素1 (CB1) 拮抗活性的吲哚生物碱。Voacamine 可以抑制核易位。Voacamine 能够增强阿霉素 (HY-15142A) 的作用,因为它可以干扰 P-糖蛋白 (P-gp) 的功能。Voacamine 能够促进人骨肉瘤细胞中不依赖凋亡的自噬 (autophagic) 细胞死亡Voacamine 能够激活线粒体相关的凋亡 (apoptosis) 信号通路,并抑制 PI3K/Akt/mTOR信号通路,从而抑制乳腺癌进展。Voacamine 抑制 EGFR 发挥对抗结直肠癌的致癌活性。
    Voacamine
  • HY-128333
    PI3K/mTOR Inhibitor-4 Inhibitor
    PI3K/mTOR Inhibitor-4 是一种泛 I 类 PI3K/mTOR 抑制剂,具有口服活性。PI3K/mTOR Inhibitor-4 对 PI3Kα、PI3Kγ、PI3Kδ 和 mTOR 具有酶抑制活性,IC50 值分别为 0.63 nM、22 nM、9.2 nM 和 13.85 nM。PI3K/mTOR Inhibitor-4 可用于癌症的研究。
    PI3K/mTOR Inhibitor-4
  • HY-110109
    ETP-45658 Inhibitor 98.97%
    ETP-45658 是一种有效的 PI3K 抑制剂,抑制 PI3KαPI3KδPI3KβPI3KγIC50 值分别为 22.0 nM,39.8 nM,129.0 nM 和 717.3 nM。ETP-45658 还可以抑制 DNA-PK (IC50=70.6 nM) 和 mTOR (IC50=152.0 nM)。ETP-45658 可用于癌症研究。
    ETP-45658
  • HY-B0168B
    Levomilnacipran hydrochloride

    左旋米那普林 (盐酸盐)

    Activator 99.95%
    Levomilnacipran ((1S,2R)-Milnacipran) hydrochloride 是 Milnacipran (HY-B0168) 的对映异构体,也是能透过血脑屏障的 P-gp 强底物。Levomilnacipran hydrochloride 是 5-羟色胺和去甲肾上腺素再摄取抑制剂,对人去甲肾上腺素转运体 (NET) 和 5-羟色胺转运体 (SERT) 的 IC50 分别为 10.5 nM 和 19.0 nM,Ki 分别为 92.2 nM 和 1.2 nM。Levomilnacipran hydrochloride 具有抗抑郁与抗焦虑活性。Levomilnacipran hydrochloride 可用于抑郁症的研究。
    Levomilnacipran hydrochloride
  • HY-N1050
    Zederone

    蓬莪术环氧酮

    Inhibitor 99.61%
    Zederone 是一种 germacrane 型倍半萜烯,对人类白细胞癌细胞和人类前列腺癌细胞具有强大的细胞毒性。Zederone 显着抑制 SKOV3 细胞增殖并下调 mTOR 和磷酸化 p70 S6 激酶 (p-p70s6K) 的蛋白表达。
    Zederone
  • HY-Y0252R
    L-Proline (Standard)

    L-脯氨酸 (Standard)

    Activator
    L-Proline (Standard) 是 L-Proline 的分析标准品。本产品用于研究及分析应用。L-Proline 是人体中二十种氨基酸之一,用于构建蛋白质。
    L-Proline (Standard)
  • HY-136660
    PQR626 Inhibitor 98.05%
    PQR626 是一种雷帕霉素类似物。PQR626 是一种高效的,选择性的,具有口服活性的,能穿过血脑屏障的 mTOR 抑制剂,其 IC50Ki 的值分别为 5 nM 和 3.6 nM。PQR626 可用于神经系统疾病的研究。
    PQR626
  • HY-137175
    TMBIM6 antagonist-1 Antagonist 99.60%
    TMBIM6 antagonist-1 是一个有潜力的 TMBIM6 拮抗剂,抑制 TMBIM6 与 mTORC2 结合,降低 mTORC2 活性,调节TMBIM6 释放 Ca2+
    TMBIM6 antagonist-1
  • HY-109179A
    Itacnosertib hydrochloride Inhibitor 99.43%
    Itacnosertib hydrochloride (TP-0184 hydrochloride) 是 FLT3ACVR1 (ALK2IC50=8 nM) 和 JAK2 (IC50=8540 nM) 的抑制剂。Itacnosertib hydrochloride 具有抗白血病活性。
    Itacnosertib hydrochloride
  • HY-162143
    SKI-349 Inhibitor 99.58%
    SKI-349 是一种鞘氨醇激酶 1/2 (SPHK1/2) 和微管聚合 (MDA) 的双重靶向抑制剂。SKI-349 具有抗癌活性。SKI-349 能抑制肝细胞活力、侵袭和 AKT/mTOR 信号通路。
    SKI-349
  • HY-163198
    ASCT2-IN-1 Inhibitor 98.21%
    ASCT2-IN-1 (compound 20k)是一种 ASCT2 抑制剂,在细胞 A549 和 HEK293 中的 IC50 值是 5.6 μM 和 3.5 μM。ASCT2-IN-1 可以诱导细胞凋亡(apoptosis)。ASCT2-IN-1 抑制肿瘤生长。
    ASCT2-IN-1
  • HY-13691
    MKC-1 Inhibitor 99.78%
    MKC-1 (Ro-31-7453) 是一种口服有效的细胞周期抑制剂,具有广泛的抗肿瘤活性。MKC-1 抑制 Akt/mTOR 通路。通过结合一系列不同的细胞蛋白,包括微管蛋白 (tubulin) 和导入蛋白 β (importin β) 家族成员,MKC-1 阻止细胞有丝分裂并诱导细胞凋亡 (apoptosis)。
    MKC-1
  • HY-W348485
    WRX606 Inhibitor
    WRX606 是一种口服有效的非雷帕霉素类似物抑制剂,用于抑制 mTOR complex 1 (mTORC1M)。WRX606 可抑制 MCF-7 细胞中 mTORC1 底物 S6 激酶 1 (S6K1) (IC50 = 10 nM) 和真核翻译起始因子 4E 结合蛋白 (p-4E-BP1) (IC50 = 0.27 μM) 的磷酸化。WRX606 可抑制小鼠体内的肿瘤生长,且不促进肿瘤转移。WRX606 可作为抗肿瘤药物进行研究。
    WRX606
  • HY-163199
    ASCT2-IN-2 Inhibitor 99.10%
    ASCT2-IN-2(化合物 25e)是一种 ASCT2 抑制剂,IC50 值是 5.14 μM。 ASCT2-IN-2 可以调节氨基酸代谢和 mTOR信号转导,诱导细胞凋亡(apoptosis)。ASCT2-IN-2 具有抗肿瘤活性。
    ASCT2-IN-2
  • HY-10219GL
    Rapamycin (GMP Like)

    雷帕霉素 (GMP Like); 西罗莫司 (GMP Like)

    Inhibitor 98.8%
    Rapamycin (Sirolimus) GMP Like 是 GMP Like 级别的 Rapamycin (HY-10219)。GMP Like 级别的小分子可用做细胞疗法中的辅助试剂。Rapamycin 是一种有效且特异性的 mTOR 抑制剂。
    Rapamycin (GMP Like)
  • HY-134903
    (32-Carbonyl)-RMC-5552 Inhibitor
    (32-Carbonyl)-RMC-5552 是一种有效的 mTOR 抑制剂。(32-Carbonyl)-RMC-5552 抑制 mTORC1mTORC2 底物 (p-P70S6K-(T389)、p-4E-BP1-(T37/36) 和 p-AKT1/2/3-(S473)) 磷酸化 pIC50s 分别为 > 9, >9, 以及 8-9 之间 (专利 WO2019212990A1, example 2)。
    (32-Carbonyl)-RMC-5552
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.