1. Academic Validation
  2. A self-assembling split Nano luciferase-based assay for investigating Pseudomonas syringae effector secretion

A self-assembling split Nano luciferase-based assay for investigating Pseudomonas syringae effector secretion

  • Stress Biol. 2024 Feb 16;4(1):14. doi: 10.1007/s44154-024-00152-2.
Pei Miao 1 2 3 Jian-Min Zhou 1 2 4 3 Wei Wang 5 6
Affiliations

Affiliations

  • 1 State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
  • 2 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • 3 Yazhouwan National Laboratory, Sanya, 572024, China.
  • 4 CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • 5 State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. weiwang@genetics.ac.cn.
  • 6 CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. weiwang@genetics.ac.cn.
Abstract

Many Gram-negative pathogens employ the type III secretion system (T3SS) to deliver effector proteins into host cells, thereby modulating host cellular processes and suppressing host immunity to facilitate pathogenesis and colonization. In this study, we developed a straightforward, rapid, and quantitative method for detecting T3SS-mediated translocation of Pseudomonas syringae effectors using a self-assembling split Nano luciferase (Nluc)-based reporter system. It was demonstrated that this system can detect effector secretion in vitro with an exceptionally high signal-to-noise ratio and sensitivity, attributed to the strong affinity between the split domains of Nluc and the intense luminescence generated by functional Nluc. During natural infections, effectors fused to a small C-terminal fragment of Nluc were successfully translocated into plant cells and retained their virulence functions. Furthermore, upon Infection of Plants expressing the N-terminal fragment of Nluc with these P. syringae strains, functional Nluc proteins were spontaneously assembled and produced bright luminescence, demonstrating that this system enables the straightforward and rapid assessment of P. syringae T3SS-mediated effector translocation during natural infections. In conclusion, the self-assembling split Nluc-based reporting system developed in this study is suitable for efficient in vitro and in planta detection of effectors secreted via T3SS.

Keywords

Nano luciferase; Pseudomonas syringae; Secretion; T3SS effectors.

Figures
Products