1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-112914
    mTOR inhibitor-1 Inhibitor 98.82%
    mTOR inhibitor-1 (Compound C-4) 是一种 mTOR 通路抑制剂,可抑制细胞增殖,诱导自噬 (autophagy)。
    mTOR inhibitor-1
  • HY-109179
    Itacnosertib Inhibitor 99.06%
    Itacnosertib (TP-0184) 是 FLT3ACVR1 (ALK2IC50=8 nM) 和 JAK2 (IC50=8540 nM) 的抑制剂。Itacnosertib 具有抗白血病活性。
    Itacnosertib
  • HY-11080
    PKI-179 Inhibitor ≥98.0%
    PKI-179 是一种有效的和具有口服活性的双重 PI3K/mTOR 抑制剂,对 PI3K-αPI3K-βPI3K-γPI3K-δmTORIC50 值分别为 8 nM,24 nM,74 nM,77 nM 和 0.42 nM。PKI-179 还表现出对 E545KH1047R 的活性,IC50 值分别为 14 nM 和 11 nM。PKI-179 在体内显示出抗肿瘤活性。
    PKI-179
  • HY-12808
    STF-118804 Inhibitor 99.72%
    STF-118804是烟酰胺磷酸核糖基转移酶NAMPT高选择性抑制剂。STF-118804 可激活 AMPK 并抑制 mTOR 通路。STF-118804 对胰腺癌具有抗肿瘤活性。
    STF-118804
  • HY-N6950
    Hederacolchiside A1

    革叶常春藤皂苷 A1

    Modulator ≥99.0%
    Hederacolchiside A1 是从白头翁中分离的,通过调节 PI3K/Akt/mTOR 信号通路诱导凋亡,从而抑制肿瘤细胞的增殖。Hederacolchiside A1 具有抗血吸虫病活性,影响体内和体外的寄生虫生存力。
    Hederacolchiside A1
  • HY-114414
    HDACs/mTOR Inhibitor 1 Inhibitor 99.01%
    HDACs/mTOR Inhibitor 1 是一种双重的 HDAC.html" class="link-product" target="_blank">HDACs 和 mTOR.html" class="link-product" target="_blank">mTOR 抑制剂,对 HDAC1, HDAC6, mTORIC50s 分别为 0.19 nM、1.8 nM、1.2 nM。HDACs/mTOR Inhibitor 1 刺激细胞周期停滞在 G0/G1 期并诱导肿瘤细胞凋亡,且 in vivo 毒性低。HDACs/mTOR Inhibitor 1 可用于血液系统恶性肿瘤的研究。
    HDACs/mTOR Inhibitor 1
  • HY-N0486S3
    L-Leucine-15N

    L-亮氨酸 15N

    Activator ≥98.0%
    L-Leucine-15N 是一种 15N 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-<sup>15</sup>N
  • HY-10219S
    Rapamycin-d3

    雷帕霉素 d3

    Inhibitor
    Rapamycin-d3 是 Rapamycin (HY-10219) 的氘代物。Rapamycin 是一种有效且特异性的 mTOR 抑制剂,作用于 HEK293 细胞,抑制 mTORIC50 为 0.1 nM。Rapamycin 与 FKBP12 结合且抑制 mTORC1。Rapamycin 还是一种自噬 (autophagy) 激活剂,免疫抑制剂。
    Rapamycin-d<sub>3</sub>
  • HY-100470
    NSC781406 Inhibitor 99.97%
    NSC781406是高效的 PI3KmTOR 抑制剂,对PI3Kα的 IC50 值为2 nM。
    NSC781406
  • HY-W058849
    MT 63-78 Inhibitor 98.00%
    MT 63-78 是一种有效的直接 AMPK 激活剂,EC50 为 25 μM。M 63-78 还诱导细胞有丝分裂阻滞和细胞凋亡 (apoptosis)。MT 63-78 通过抑制脂肪生成和 mTORC1 途径来阻止前列腺癌的生长。MT 63-78 具有抗肿瘤作用。
    MT 63-78
  • HY-126077
    MTI-31 Inhibitor 99.98%
    MTI-31 (LXI-15029) 是一种有效的,具有口服活性的,且高度选择性的 mTORC1mTORC2 抑制剂。MTI-31 高选择性作用于 mTORKd 为 0.20 nM。MTI-31 对 mTORIC50 为 39 nM。MTI-31可用于乳腺癌的研究。
    MTI-31
  • HY-13806
    XL388 Inhibitor 99.74%
    XL388 是一种高效的 ATP 竞争性 mTOR 抑制剂,IC50 为 9.9 nM。XL388 同时抑制 mTORC1mTORC2
    XL388
  • HY-109046
    Tulrampator 99.39%
    Tulrampator (S-47445) 是有口服活性的,选择性的 AMPA receptor 调节剂,Tulrampator 具有促认知、增强突触可塑性、抗抑郁、抗焦虑、促认知和潜在的神经保护作用,并且可用于阿尔茨海默病和重性抑郁障碍的研究。
    Tulrampator
  • HY-132902
    DEPTOR-IN-1 Inhibitor 99.09%
    DEPTOR-IN-1 是一种新的潜在的 DEPTOR 抑制剂,其 Kd 值为 9.3 μM。
    DEPTOR-IN-1
  • HY-131344
    mTOR inhibitor-8 Inhibitor 98.14%
    mTOR inhibitor-8 是一种 mTOR 抑制剂和自噬 (autophagy) 诱导剂。mTOR inhibitor-8 通过 FKBP12 抑制 mTOR 活性,并诱导 A549 人肺癌细胞自噬。
    mTOR inhibitor-8
  • HY-12034
    WYE-354 Inhibitor 98.04%
    WYE-354 是一种 ATP 竞争性的 mTOR 抑制剂,IC50 为 5 nM。WYE-354 也抑制 PI3KαPI3KγIC50 分别为 1.89 μM 和 7.37 μM。WYE-354 抑制 mTORC1mTORC2。WYE-354 在体外能诱导自噬 (autophagy) 激活.
    WYE-354
  • HY-N0486S
    L-Leucine-d10

    L-亮氨酸 d10

    Activator ≥99.0%
    L-Leucine-d10 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d<sub>10</sub>
  • HY-W749694
    Cannflavin B Inhibitor 98.36%
    Cannflavin B 是一种可以从 Cannabis sativa L 中分离得到的黄酮类化合物。Cannflavin B 是 PGE2 释放 (IC50: 0.7 μM)、mPGES-1 (IC50: 3.7 μM) 和 5-lipoxygenase 抑制剂。Cannflavin B 具有抗炎抗氧化、抗糖基化、抗铁死亡 (ferroptosis)、抗肿瘤和抗利什曼原虫 (IC50: 14 μM) 等多种活性。Cannflavin B 也可抑制 TrkB-BDNF 信号通路。
    Cannflavin B
  • HY-N0914
    Ajugol

    益母草苷

    Inhibitor 99.13%
    Ajugol 是一种从传统中药益母草 (Leonurus japonicus) 中发现的具有口服活性的环烯醚糖苷。Ajugol 是一种自噬 (autophagy) 激活剂。Ajugol 可激活 TFEB 介导的自噬和溶酶体生物合成。Ajugol 还具有抗炎和抗原虫活性作用。Ajugol 在哮喘、非酒精性脂肪肝 (NAFLD)、骨关节炎的疾病研究中具有很大潜力。
    Ajugol
  • HY-N2217
    Rotundic acid

    铁冬青酸

    Inhibitor 99.41%
    Rotundic acid 是一种从铁冬青 (Ilex rotunda Thunb) 中获得的三萜类化合物,可通过 AKT/mTORMAPK 途径在肝细胞癌中诱导 DNA 损伤和细胞凋亡。Rotundic acid 具有抗炎和保护心脏的能力。
    Rotundic acid
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.