1. Academic Validation
  2. Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) micellization using isothermal titration calorimetry: temperature, salt, and pH dependence

Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) micellization using isothermal titration calorimetry: temperature, salt, and pH dependence

  • Langmuir. 2012 Jul 17;28(28):10363-71. doi: 10.1021/la302133q.
Ana Kroflič 1 Bojan Sarac Marija Bešter-Rogač
Affiliations

Affiliation

  • 1 Faculty of Chemistry and Chemical Technology, Aškerčeva 5, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
Abstract

A systematic investigation of the micellization process of a biocompatible zwitterionic surfactant 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) has been carried out by isothermal titration calorimetry (ITC) at temperatures between 278.15 K and 328.15 K in water, aqueous NaCl (0.1, 0.5, and 1 M), and buffer solutions (pH = 3.0, 6.8, and 7.8). The effect of different cations and anions on the micellization of CHAPS surfactant has been also examined in LiCl, CsCl, NaBr, and NaI solutions at 308.15 K. It turned out that the critical micelle concentration, cmc, is only slightly shifted toward lower values in salt solutions, whereas in buffer media it remains similar to its value in water. From the results obtained, it could be assumed that CHAPS behaves as a weakly charged cationic surfactant in salt solutions and as a nonionic surfactant in water and buffer medium. Conventional surfactants alike, CHAPS micellization is endothermic at low and exothermic at high temperatures, but the estimated enthalpy of micellization, ΔHM0, is considerably lower in comparison with that obtained for ionic surfactants in water and NaCl solutions. The standard Gibbs free energy, ΔGM0, and entropy, ΔSM0, of micellization were estimated by fitting the model equation based on the mass action model to the experimental data. The aggregation numbers of CHAPS surfactant around cmc, obtained by the fitting procedure also, are considerably low (nagg ≈ 5 ± 1). Furthermore, some predictions about the hydration of the micelle interior based on the correlation between heat capacity change, Δcp,M0, and changes in solvent-accessible surface upon micelle formation were made. CHAPS molecules are believed to stay in contact with water upon aggregation, which is somehow similar to the micellization process of short alkyl chain cationic surfactants.

Figures
Products