1. Academic Validation
  2. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells

Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells

  • Eur J Pharmacol. 2017 Jan 15;795:134-142. doi: 10.1016/j.ejphar.2016.12.006.
Mengqing Wu 1 Dan Liu 1 Rong Zeng 1 Tao Xian 1 Yi Lu 1 Guohua Zeng 1 Zhangzetian Sun 2 Bowei Huang 2 Qiren Huang 3
Affiliations

Affiliations

  • 1 Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China.
  • 2 Jiangxi Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China.
  • 3 Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China. Electronic address: qrhuang@ncu.edu.cn.
Abstract

Epigallocatechin-3-gallate (EGCG), a major component in green tea, functions as extensive bioactivities including anti-inflammation, anti-oxidation, and anti-cancer. However, little is known about its anti-adipogenesis and underlying mechanisms. The purport of this study sought to investigate effects of EGCG on 3T3-L1 preadipocyte differentiation and to explore its possible mechanisms. The 3T3-L1 cells were induced to differentiate under the condition of pro-adipogenic cocktail with or without indicated EGCG concentrations (10, 50, 100, 200µM) for 2, 4, 6 and 8 days, respectively. Also, another batch of 3T3-L1 cells was induced under the optimal EGCG concentration (100µM) with or without SC3036 (PI3K Activator, 10µM) or SC79 (Akt Activator, 0.5µM) for 8 days. Subsequently, the cell viability was examined by MTT assay and the cell morphology was visualized by Oil red O staining. Finally, the mRNA levels including peroxisome proliferator activated receptor γ (PPARγ) and fatty acid synthase (FAS) were detected by quantitative real time PCR, while the protein levels of PPARγ, FAS, phosphatidylinositol 3 kinase (PI3K), Insulin Receptor substrate1(IRS1), Akt, and p-AKT were measured by immunoblotting analysis. Our results showed that EGCG inhibited adipogenesis of 3T3-L1 preadipocyte in a concentration-dependent manner. Moreover, the inhibitory effects were reversed by SC3036 or SC79, suggesting that the inhibitory effects of EGCG are mediated by PI3K-AKT signaling to down-regulate PPARγ and FAS expression levels. The findings shed LIGHT on EGCG anti-adipogenic effects and its underlying mechanism and provide a novel preventive-therapeutic potential for obesity subjects as a compound from Chinese green tea.

Keywords

Adipocyte; Adipogenesis; Epigallocatechin-3-gallate; Peroxisome proliferator-activated receptor gamma; Phosphatidylinositol 3-kinase.

Figures
Products