1. Academic Validation
  2. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling

A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling

  • Nat Cancer. 2023 Feb 2. doi: 10.1038/s43018-023-00513-2.
Patricia Altea-Manzano 1 2 Ginevra Doglioni # 1 2 Yawen Liu # 1 2 3 Alejandro M Cuadros 1 2 Emma Nolan 4 Juan Fernández-García 1 2 Qi Wu 1 2 5 Mélanie Planque 1 2 Kathrin Julia Laue 6 Florencia Cidre-Aranaz 7 8 Xiao-Zheng Liu 1 2 Oskar Marin-Bejar 9 10 Joke Van Elsen 1 2 Ines Vermeire 1 2 Dorien Broekaert 1 2 Sofie Demeyer 11 Xander Spotbeen 12 Jakub Idkowiak 12 13 Aurélie Montagne 14 Margherita Demicco 1 2 H Furkan Alkan 1 2 Nick Rabas 4 Carla Riera-Domingo 15 16 François Richard 17 Tatjana Geukens 17 Maxim De Schepper 17 Sophia Leduc 17 Sigrid Hatse 5 Yentl Lambrechts 5 Emily Jane Kay 18 Sergio Lilla 18 Alisa Alekseenko 19 Vincent Geldhof 20 Bram Boeckx 21 22 Celia de la Calle Arregui 1 2 Giuseppe Floris 23 24 Johannes V Swinnen 12 Jean-Christophe Marine 9 10 Diether Lambrechts 21 22 Vicent Pelechano 19 Massimiliano Mazzone 15 16 Sara Zanivan 18 25 Jan Cools 11 Hans Wildiers 5 Véronique Baud 14 Thomas G P Grünewald 7 8 26 Uri Ben-David 6 Christine Desmedt 17 Ilaria Malanchi 4 Sarah-Maria Fendt 27 28
Affiliations

Affiliations

  • 1 Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
  • 2 Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
  • 3 Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
  • 4 The Francis Crick Institute, London, UK.
  • 5 Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
  • 6 Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • 7 Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany.
  • 8 Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
  • 9 Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.
  • 10 Department of Oncology, KU Leuven, Leuven, Belgium.
  • 11 Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium.
  • 12 Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium.
  • 13 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
  • 14 Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France.
  • 15 Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium.
  • 16 Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
  • 17 Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium.
  • 18 Cancer Research UK Beatson Institute, Glasgow, UK.
  • 19 SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden.
  • 20 Laboratory for Angiogenesis and Vascular Metabolism, VIB-KU Leuven, Leuven, Belgium.
  • 21 Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium.
  • 22 Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
  • 23 Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium.
  • 24 Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
  • 25 School of Cancer Sciences, University of Glasgow, Glasgow, UK.
  • 26 Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
  • 27 Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. sarah-maria.fendt@kuleuven.be.
  • 28 Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium. sarah-maria.fendt@kuleuven.be.
  • # Contributed equally.
Abstract

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast Cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast Cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.

Figures
Products