1. Academic Validation
  2. A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation

A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation

  • J Cell Biol. 1984 Feb;98(2):596-601. doi: 10.1083/jcb.98.2.596.
W Landschulz I Thesleff P Ekblom
Abstract

Of the different growth supplements used in chemically defined media, only transferrin is required for differentiation of tubules in the embryonic mouse metanephros. Since transferrin is an iron-carrying protein, we asked whether iron is crucial for tubulogenesis. Differentiation of metanephric tubules both in whole embryonic kidneys and in a transfilter system was studied. The tissues were grown in chemically defined media containing transferrin, apotransferrin, the metal-chelator complex ferric pyridoxal isonicotinoyl hydrazone (FePIH), and excesses of ferric ion. Although we found that apotransferrin was not as effective as iron-loaded transferrin in promoting proliferation in the differentiating kidneys, excess ferric ion at up to 100 microM, five times the normal serum concentration, could not promote differentiation or proliferation. However, iron coupled to the nonphysiological, lipophilic iron chelator, pyridoxal isonicotinoyl hydrazone, to form FePIH, could sustain levels of cell proliferation and tubulogenesis similar to those attained by transferrin. Thus, the role of transferrin in cell proliferation during tubulogenesis is solely to provide iron. Since FePIH apparently bypasses the receptor-mediated route of iron intake, the use of FePIH as a tool for investigating cell proliferation and its regulation is suggested.

Figures
Products