1. Academic Validation
  2. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia

Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia

  • Neuropathology. 2023 Mar 14. doi: 10.1111/neup.12897.
Xianfeng Xia 1 Min Li 2 Renxian Wei 1 Jin Li 1 Yulin Lei 3 Meikui Zhang 4
Affiliations

Affiliations

  • 1 Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China.
  • 2 Department of Neurology, Baoji Third People's Hospital, Baoji, China.
  • 3 Department of Traditional Chinese Medicine, Zhucheng Street Hospital, Wuhan, China.
  • 4 Department of Traditional Chinese Medicine, The General Hospital of Chinese PLA, Beijing, China.
Abstract

Cerebral ischemia starts with cerebral blood flow interruption that causes severely limited oxygen and glucose supply, eliciting a cascade of pathological events, such as excitotoxicity, oxidative stress, calcium dysregulation, and inflammatory response, which could ultimately result in neuronal death. Hirudin has beneficial effects in ischemic stroke and possesses antioxidant and anti-inflammatory properties. Therefore, we investigated the biological functions of hirudin and its related mechanisms in cerebral ischemia. The ischemia-like conditions were induced by transient middle cerebral artery occlusion (MCAO). To investigate hirudin roles, intracerebroventricular injection of 10 U hirudin was given to the rats. Cognitive and motor functions were examined by beam walking and Morris water maze tests. 2,3,5-triphenyl tetrazolium chloride-stained brain sections were used to measure infarct volume. Oxidative stress was determined by assessment of oxidative stress markers. The proliferated cells were labeled by BrdU and Nestin double staining. Western blotting was performed to measure protein levels. Hirudin administration improved cognitive and motor deficits post-ischemia. Hirudin reduced brain infarction and neurological damage in MCAO-subjected rats. Hirudin alleviated oxidative stress and enhanced neurogenesis in ischemic rats. Hirudin facilitated the promotion of phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and serine-threonine kinase. In sum, hirudin alleviates cognitive deficits by attenuating oxidative stress and promoting hippocampal neurogenesis through the regulation of ERK1/2 and serine-threonine kinase in MCAO-subjected rats.

Keywords

cerebral ischemia; cognitive; hirudin; neurogenesis; oxidative stress.

Figures
Products