1. Academic Validation
  2. β-elemene enhances cisplatin-induced apoptosis in bladder cancer cells through the ROS-AMPK signaling pathway

β-elemene enhances cisplatin-induced apoptosis in bladder cancer cells through the ROS-AMPK signaling pathway

  • Oncol Lett. 2020 Jan;19(1):291-300. doi: 10.3892/ol.2019.11103.
Daoju Gan 1 2 Weiyang He 1 Hubin Yin 1 3 Xin Gou 1
Affiliations

Affiliations

  • 1 Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.
  • 2 Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.
  • 3 Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.
Abstract

Cisplatin-based chemotherapy is the standard regimen for patients with bladder Cancer, but its effectiveness is limited by high toxicity and the development of drug resistance. β-elemene (β-ELE), a compound extracted from Rhizoma zedoariae, has antitumor activity in various malignancies and exhibits low toxicity. However, the effects and specific mechanism of β-ELE in bladder Cancer remain unclear. The present study aimed to investigate the antitumor activity and possible mechanisms of β-ELE alone and in combination with cisplatin in bladder Cancer cells. Cell viability was determined using Cell Counting Kit-8. Cell cycle and Reactive Oxygen Species (ROS) analyses were performed by flow cytometry. Apoptosis was detected by Hoechst 33258 and Annexin-V/propidium iodide staining. Mitochondrial membrane potential was determined by staining with a JC-1 probe, flow cytometry and fluorescence microscopy. Protein expression was detected by western blotting. The results revealed that β-ELE significantly inhibited the proliferation of various bladder Cancer cell lines and induced cell cycle arrest at G0/G1-phase in T24 and 5637 cells. Compared with cisplatin alone, co-treatment with β-ELE increased cisplatin-mediated cytotoxicity against T24 cells, which resulted in the loss of mitochondrial membrane potential and release of cytochrome c into the cytoplasm. Co-treatment with β-ELE and cisplatin enhanced ROS accumulation and activation of 5'AMP-activated protein kinase (AMPK), which induced Apoptosis. The results of the present study suggested that β-ELE inhibited the proliferation of bladder Cancer cells in vitro and enhanced cisplatin-induced mitochondria-dependent Apoptosis via the ROS-AMPK signaling pathway. Combination therapy with β-ELE requires further investigation as a potential treatment of bladder Cancer.

Keywords

5′AMP-activated protein kinase; apoptosis; bladder cancer; cisplatin; β-elemene.

Figures
Products