1. Signaling Pathways
  2. Cell Cycle/DNA Damage
  3. HDAC

HDAC (组蛋白去乙酰化酶)

Histone deacetylases

HDAC (Histone deacetylases) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on ahistone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. Together with the acetylpolyamine amidohydrolases and the acetoin utilization proteins, the histone deacetylases form an ancient protein superfamily known as the histone deacetylase superfamily.

目录号 产品名 作用方式 纯度
  • HY-15144
    Trichostatin A


    Inhibitor 99.58%
    Trichostatin A (TSA) 是有效的,特异的组蛋白去乙酰化酶类型 I 和 II (HDAC class I/II) 抑制剂,对 HDAC 的 IC50 值为 1.8 nM。
  • HY-A0281
    4-Phenylbutyric acid


    Inhibitor 99.98%
    4-Phenylbutyric acid (4-PBA) 是一种组蛋白去乙酰化酶 (HDAC) 和内质网应激 (ERS) 抑制剂,可用于癌症和感染等疾病的研究。
  • HY-10221


    Inhibitor 99.90%
    Vorinostat (SAHA) 是一种有效的,可口服的 HDAC1HDAC2HDAC3 (Class I)HDAC6HDAC7 (Class II)Class IV (HDAC11) 的抑制剂,对 HDAC1/3 的 ID50 值分别为 10 nM 和 20 nM。Vorinostat 可以诱导细胞凋亡 (apoptosis)。Vorinostat 还是一种人类乳头瘤病毒 (HPV)-18 DNA 扩增的有效抑制剂。
  • HY-10585
    Valproic acid


    Inhibitor ≥98.0%
    Valproic acid (VPA) 是一种具有口服活性的 HDAC 抑制剂,IC50 值为 0.5-2 mM,抑制 HDAC1 的活性,(IC50,400 μM),同时可诱导 HDAC2 的降解。Valproic acid 激活 Notch1 信号并抑制小细胞肺癌 (SCLC) 细胞的增殖。Valproic acid 可用于癫痫、双相情感障碍、代谢疾病、HIV 感染和偏头痛等的研究。
  • HY-13755


    Inhibitor 99.75%
    Sulforaphane 是存在于多种蔬菜中的天然异硫氰酸酯。Sulforaphane 增加肿瘤抑制蛋白的转录并抑制组蛋白脱乙酰酶的活性。Sulforaphan 可以激活 Nrf2 ,并通过 AMPK 依赖性信号传导抑制高糖诱导的胰腺癌。 Sulforaphan 具有抗癌和抗炎活性。
  • HY-143248
    KR-39038 Inhibitor 98.65%
    KR-39038 是一种口服有效的 GRK5 (G 蛋白偶联受体激酶 5) 抑制剂,IC50 为 0.02 μM。在新生儿心肌细胞中,KR-39038 通过抑制 HDAC5 通路,显著抑制血管紧张素 II 诱导的细胞肥大。KR-39038 具有明显的抗心肌肥厚作用和改善心功能。KR-39038 可用于心力衰竭的研究。
  • HY-10224A
    Panobinostat lactate Inhibitor
    Panobinostat lactate 是一种有效的口服非选择性 HDAC 抑制剂,具有抗肿瘤活性。Panobinostat lactate 可有效干扰HIV潜伏期。Panobinostat lactate 诱导细胞凋亡 (apoptosis) 和自噬 (autophagy)。Panobinostat lactate 可用于难治性或复发性多发性骨髓瘤的研究。
  • HY-151464
    SHP2/HDAC-IN-1 Inhibitor
    SHP2/HDAC-IN-1 是一种变构的 SHP2/HDAC 双重抑制剂,IC50 值分别为 20.4 nM (SHP2) 和 25.3 nM ( HDAC1)。SHP2/HDAC-IN-1 通过激活 T 细胞、增强抗原呈递功能和促进细胞因子分泌来触发抗肿瘤免疫反应。SHP2/HDAC-IN-1 可用于癌症的免疫治疗研究。
  • HY-10224


    Inhibitor 99.48%
    Panobinostat (LBH589; NVP-LBH589) 是一种有效的口服非选择性 HDAC 抑制剂,具有抗肿瘤活性。Panobinostat 可诱导 HIV-1 virus 的产生,即使在较低的浓度范围 8-31 nM,也可刺激 HIV-1 在潜伏感染细胞中的表达。Panobinostat 诱导细胞凋亡 (apoptosis) 和自噬 (autophagy)。Panobinostat 可用于难治性或复发性多发性骨髓瘤的研究。
  • HY-12163


    Inhibitor 99.65%
    Entinostat 选择性,可口服的 HDAC class I 抑制剂,抑制 HDAC1HDAC2HDAC3IC50 分别为 243 nM,453 nM 和 248 nM。
  • HY-15149


    Inhibitor 99.98%
    Romidepsin (FK 228) 是具有抗肿瘤活性的组蛋白去乙酰化酶 (HDAC) 抑制剂,抑制 HDAC1,HDAC2,HDAC4 和 HDAC6,IC50 值分别为 36 nM,47 nM,510 nM 和 1.4 μM。Romidepsin (FK 228) 由紫色杆菌产生,诱导 G2/M 细胞周期阻滞和凋亡 (apoptosis)。
  • HY-109015


    Inhibitor 99.82%
    Tucidinostat (Chidamide) 是一种有效的,可口服的 HDAC 第 I 类 HDAC1/2/3 和第 IIb 类 HDAC10 的抑制剂,IC50 值分别为 95,160,67 和 78 nM,对 HDAC8 和 HDAC11 的作用较弱 (IC50,733 nM,432 nM),对 HDAC4/5/6/7/9 无作用。
  • HY-13909
    RGFP966 Inhibitor 99.81%
    RGFP966 是高选择性的 HDAC3 抑制剂,IC50 为 80 nM,在 15 μM 时对其他 HDAC 无抑制作用。RGFP966 能够透过血脑屏障 (BBB)。
  • HY-10585A
    Valproic acid sodium


    Inhibitor ≥98.0%
    Valproic acid (Sodium Valproate) sodium 是一种具有口服活性的 HDAC 抑制剂,IC50 值为 0.5-2 mM,抑制 HDAC1 的活性,(IC50,400 μM),同时可诱导 HDAC2 的降解。Valproic acid sodium 激活 Notch1 信号并抑制小细胞肺癌 (SCLC) 细胞的增殖。Valproic acid sodium 可用于癫痫、双相情感障碍、代谢疾病、HIV 感染和偏头痛等的研究。
  • HY-16026
    Ricolinostat Inhibitor 99.83%
    Ricolinostat (ACY-1215) 是一种有效,选择性的 HDAC6 抑制剂,IC50 为 5 nM。ACY-1215 也可抑制 HDAC1HDAC2HDAC3IC50 分别为 58,48 和 51 nM。
  • HY-15654
    Sodium 4-phenylbutyrate


    Inhibitor 99.96%
    Sodium 4-phenylbutyrate (4-PBA sodium) 是一种组蛋白去乙酰化酶 (HDAC) 和内质网应激 (ERS) 抑制剂,可用于癌症和感染等疾病的研究。
  • HY-10225


    Inhibitor 99.94%
    Belinostat (PXD101; PX105684) 是一种有效的 HDAC 抑制剂,在 HeLa 细胞提取物中的 IC50 为 27 nM。
  • HY-18361
    TMP195 Inhibitor 99.19%
    TMP195是选择性的IIa类组蛋白脱乙酰酶 (HDAC) 抑制剂,对HDAC4,HDAC5,HDAC7,HDAC9的 Ki 值分别为59,60,26,5 nM。
  • HY-13271A
    Tubastatin A Inhibitor 98.10%
    Tubastatin A 是一种有效的,选择性的 HDAC6 抑制剂,IC50 值为 15 nM,对其选择性是对 HDAC8 的 57 倍多,是其他同工酶的 1000 多倍。Tubastatin A 还抑制 HDAC10MBLAC2
  • HY-12164
    Mocetinostat Inhibitor 99.43%
    Mocetinostat (MGCD0103)是一种有效,可口服和同种型选择性的 HDAC (Class I/IV) 抑制剂,抑制HDAC1HDAC2HDAC3HDAC11IC50分别为0.15,0.29,1.66 和 0.59 μM。 Mocetinostat对HDAC4,HDAC5,HDAC6,HDAC7或HDAC8没有抑制作用。

TCR, GPCR and HDAC II interaction: Diverse agonists act through G-protein-coupled receptors (GPCRs) to activate the PKC-PKD axis, CaMK, Rho, or MHC binding to antigens stimulates TCR to activate PKD, leading to phosphorylation of class II HDACs. Phospho-HDACs dissociate from MEF2, bind 14-3-3, and are exported to the cytoplasm through a CRM1-dependent mechanism. CRM1 is inhibited by leptomycin B (LMB). Release of MEF2 from class II HDACs allows p300 to dock on MEF2 and stimulate gene expression. Dephosphorylation of class II HDACs in the cytoplasm enables reentry into the nucleus[1].


TLR: TLR signaling is initiated by ligand binding to receptors. The recruitment of TLR domain-containing adaptor protein MyD88 is repressed by HDAC6, whereas NF-κB and MTA-1 can be negatively regulated by HDAC1/2/3 and HDAC2, respectively. Acetylation by HATs enhance MKP-1 which inhibits p38-mediated inflammatory responses, while HDAC1/2/3 inhibits MKP-1 activity. HDAC1 and HDAC8 repress, whereas HDAC6 promotes, IRF function in response to viral challenge. HDAC11 inhibits IL-10 expression and HDAC1 and HDAC2 represses IFNγ-dependent activation of the CIITA transcription factor, thus affecting antigen presentation[2][3].


IRNAR: IFN-α/β induce activation of the type I IFN receptor and then bring the receptor-associated JAKs into proximity. JAK adds phosphates to the receptor. STATs bind to the phosphates and then phosphorylated by JAKs to form a dimer, leading to nuclear translocation and gene expression. HDACs positively regulate STATs and PZLF to promote antiviral responses and IFN-induced gene expression[2][3].


Cell cycle: In G1 phase, HDAC, Retinoblastoma protein (RB), E2F and polypeptide (DP) form a repressor complex. HDAC acts on surrounding chromatin, causing it to adopt a closed chromatin conformation, and transcription is repressed. Prior to the G1-S transition, phosphorylation of RB by CDKs dissociates the repressor complex. Transcription factors (TFs) gain access to their binding sites and, together with the now unmasked E2F activation domain. E2F is then free to activate transcription by contacting basal factors or by contacting histone acetyltransferases, such as CBP, that can alter chromatin structure[4].


The function of non-histone proteins is also regulated by HATs/HDACs. p53: HDAC1 impairs the function of p53. p53 is acetylated under conditions of stress or HDAC inhibition by its cofactor CREB binding protein (CBP) and the transcription of genes involved in differentiation is activated. HSP90: HSP90 is a chaperone that complexes with other chaperones, such as p23, to maintain correct conformational folding of its client proteins. HDAC6 deacetylates HSP90. Inhibition of HDAC6 would result in hyperacetylated HSP90, which would be unable to interact with its co-chaperones and properly lead to misfolded client proteins being targeted for degradation via the ubiquitin-proteasome system[5][6].


[1]. Vega RB, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5.Mol Cell Biol. 2004 Oct;24(19):8374-85.
[2]. Shakespear MR, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011 Jul;32(7):335-43.
[3]. Suliman BA, et al. HDACi: molecular mechanisms and therapeutic implications in the innate immune system.Immunol Cell Biol. 2012 Jan;90(1):23-32. 
[4]. Brehm A, et al. Retinoblastoma protein meets chromatin.Trends Biochem Sci. 1999 Apr;24(4):142-5.
[5]. Butler R, et al. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders.Nat Rev Neurosci. 2006 Oct;7(10):784-96
[6]. Minucci S, et al. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer.Nat Rev Cancer. 2006 Jan;6(1):38-51.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.