1. Signaling Pathways
  2. Cell Cycle/DNA Damage
    Epigenetics
  3. HDAC

HDAC (组蛋白去乙酰化酶)

HDAC (Histone deacetylases) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on ahistone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. Together with the acetylpolyamine amidohydrolases and the acetoin utilization proteins, the histone deacetylases form an ancient protein superfamily known as the histone deacetylase superfamily.

HDAC 亚型特异性产品:

  • HDAC

  • HDAC1

  • HDAC2

  • HDAC3

  • HDAC4

  • HDAC5

  • HDAC6

  • HDAC7

  • HDAC8

  • HDAC9

  • HDAC10

  • HDAC11

  • HD1

  • HD2

目录号 产品名 作用方式 纯度
  • HY-15144
    Trichostatin A Inhibitor ≥98.0%
    Trichostatin A (TSA) 是有效的,特异的组蛋白去乙酰化酶类型 I 和 II (HDAC class I/II) 抑制剂,对 HDAC 的 IC50 值为 1.8 nM。
  • HY-A0281
    4-Phenylbutyric acid Inhibitor
    4-Phenylbutyric acid (4-PBA) 是一种组蛋白去乙酰化酶 (HDAC) 和内质网应激 (ER) 抑制剂,可用于癌症和感染等疾病的研究。
  • HY-10585
    Valproic acid Inhibitor ≥98.0%
    Valproic acid (VPA; 2-Propylpentanoic Acid) 是一种 HDAC 抑制剂,IC50 值为 0.5-2 mM,抑制 HDAC1 的活性,(IC50,400 μM),同时可诱导 HDAC2 的降解。Valproic acid 激活 Notch1 信号并抑制小细胞肺癌 (SCLC) 细胞的增殖。Valproic acid 可用于癫痫、双相情感障碍和偏头痛等的研究。
  • HY-12163
    Entinostat Inhibitor 99.65%
    Entinostat 选择性,可口服的 HDAC class I 抑制剂,抑制 HDAC1HDAC2HDAC3IC50 分别为 243 nM,453 nM 和 248 nM。
  • HY-13755
    Sulforaphane Inhibitor ≥98.0%
    Sulforaphane 是存在于多种蔬菜中的天然异硫氰酸酯。Sulforaphane 增加肿瘤抑制蛋白的转录并抑制组蛋白脱乙酰酶的活性。Sulforaphan 可以激活 Nrf2 ,并通过 AMPK 依赖性信号传导抑制高糖诱导的胰腺癌。 Sulforaphan 具有抗癌和抗炎活性。
  • HY-N4315
    Pomiferin Inhibitor
    Pomiferin (NSC 5113) 为 HDACmTOR 的抑制剂,IC50 值分别为 1.05 μM 和 6.2 µM。
  • HY-114483
    AES-135 Inhibitor 98.31%
    AES-135 是一种基于羟肟酸的 HDAC 抑制剂,可延长胰腺癌原位小鼠模型的存活时间。AES-135 抑制 HDAC3、HDAC6、HDAC8 和 HDAC11,IC50 范围为190-1100 nM。
  • HY-15149
    Romidepsin Inhibitor 99.98%
    Romidepsin (FK 228) 是具有抗肿瘤活性的组蛋白去乙酰化酶 (HDAC) 抑制剂,抑制 HDAC1,HDAC2,HDAC4 和 HDAC6,IC50 值分别为 36 nM,47 nM,510 nM 和 1.4 μM。Romidepsin (FK 228) 由紫色杆菌产生,诱导 G2/M 细胞周期阻滞和凋亡 (apoptosis)。
  • HY-15654
    Sodium 4-phenylbutyrate Inhibitor 99.80%
    Sodium 4-phenylbutyrate (4-PBA sodium) 是一种组蛋白去乙酰化酶 (HDAC) 和内质网应激 (ERS) 抑制剂,可用于癌症和感染等疾病的研究。
  • HY-13909
    RGFP966 Inhibitor 99.81%
    RGFP966 是高选择性的 HDAC3 抑制剂,IC50 为 80 nM,在 15 μM 时对其他 HDAC 无抑制作用。RGFP966 能够透过血脑屏障 (BBB)。
  • HY-10585A
    Valproic acid sodium salt Inhibitor ≥98.0%
    Valproic acid sodium salt (Sodium Valproate) 是一种 HDAC 抑制剂,IC50 值为 0.5-2 mM,抑制 HDAC1 的活性,(IC50,400 μM),同时可诱导 HDAC2 的降解。Valproic acid sodium salt 激活 Notch1 信号并抑制小细胞肺癌 (SCLC) 细胞的增殖。Valproic acid sodium salt 可用于癫痫、双相情感障碍和偏头痛等的研究。
  • HY-10528
    Tasquinimod Modulator
    Tasquinimod是一种口服抗血管生成剂,有潜力用于去势抵抗性前列腺癌的研究。Tasquinimod与 HDAC4 Zn2+ 结合结构域结合的Kd 值为10-30 nM。Tasquinimod 也是一种 S100A9 抑制剂。
  • HY-111048
    Corin Inhibitor 98.75%
    Corin 是组氨酸赖氨酸特异性去甲基化酶 (LSD1) 和组氨酸脱乙酰化酶 (HDAC) 的双重抑制剂,其对 LSD1 的 Ki(inact) 值为 110 nM,对 HDAC1 的 IC50 值为 147 nM。
  • HY-50934
    Tacedinaline Inhibitor 99.51%
    Tacedinaline (N-acetyldinaline) 是组蛋白脱乙酰酶(HDAC)的抑制剂,抑制重组 HDAC 1, 2 和 3 的 IC50 值分别为 0.9,0.9,1.2 μM。
  • HY-13606
    Dacinostat Inhibitor ≥98.0%
    Dacinostat 是一种有效的 HDAC 抑制剂,IC50 值为 32 nM;Dacinostat 同时可抑制 HDAC1 的活性,IC50 值为 9 nM,主要用于癌症研究。
  • HY-100508
    ITSA-1 Activator ≥98.0%
    ITSA-1 是 HDAC 的激活剂,可抵消曲古抑菌素 A (trichostatin A, TSA) 诱导的细胞周期停滞,组蛋白乙酰化和转录水平。
  • HY-128918
    SIS17 Inhibitor 98.82%
    SIS17 是哺乳动物组蛋白去乙酰化酶 11 (HDAC 11) 抑制剂,IC50 值为 0.83 μM, 抑制去甲酰化 HDAC 11 底物,丝氨酸羟甲基转移酶 2,而不抑制其他 HDAC。
  • HY-13271
    Tubastatin A Hydrochloride Inhibitor
    Tubastatin A Hydrochloride 是一种有效的,选择性的 HDAC6 抑制剂,IC50 值为 15 nM,对其选择性是 HDAC8 外的其他亚型的 1000 多倍。
  • HY-100871
    WT-161 Inhibitor 98.52%
    WT-161是有效选择性的HDAC6抑制剂,IC50值为0.40 nM。
  • HY-13216
    Pyroxamide Inhibitor 99.51%
    Pyroxamide 是一种有效的组蛋白脱乙酰基酶 1 (HDAC1) 抑制剂,ID50 为 100 nM。 Pyroxamide 可以诱导白血病细胞凋亡和细胞周期停滞。

TCR, GPCR and HDAC II interaction: Diverse agonists act through G-protein-coupled receptors (GPCRs) to activate the PKC-PKD axis, CaMK, Rho, or MHC binding to antigens stimulates TCR to activate PKD, leading to phosphorylation of class II HDACs. Phospho-HDACs dissociate from MEF2, bind 14-3-3, and are exported to the cytoplasm through a CRM1-dependent mechanism. CRM1 is inhibited by leptomycin B (LMB). Release of MEF2 from class II HDACs allows p300 to dock on MEF2 and stimulate gene expression. Dephosphorylation of class II HDACs in the cytoplasm enables reentry into the nucleus[1].

 

TLR: TLR signaling is initiated by ligand binding to receptors. The recruitment of TLR domain-containing adaptor protein MyD88 is repressed by HDAC6, whereas NF-κB and MTA-1 can be negatively regulated by HDAC1/2/3 and HDAC2, respectively. Acetylation by HATs enhance MKP-1 which inhibits p38-mediated inflammatory responses, while HDAC1/2/3 inhibits MKP-1 activity. HDAC1 and HDAC8 repress, whereas HDAC6 promotes, IRF function in response to viral challenge. HDAC11 inhibits IL-10 expression and HDAC1 and HDAC2 represses IFNγ-dependent activation of the CIITA transcription factor, thus affecting antigen presentation[2][3].

 

IRNAR: IFN-α/β induce activation of the type I IFN receptor and then bring the receptor-associated JAKs into proximity. JAK adds phosphates to the receptor. STATs bind to the phosphates and then phosphorylated by JAKs to form a dimer, leading to nuclear translocation and gene expression. HDACs positively regulate STATs and PZLF to promote antiviral responses and IFN-induced gene expression[2][3].

 

Cell cycle: In G1 phase, HDAC, Retinoblastoma protein (RB), E2F and polypeptide (DP) form a repressor complex. HDAC acts on surrounding chromatin, causing it to adopt a closed chromatin conformation, and transcription is repressed. Prior to the G1-S transition, phosphorylation of RB by CDKs dissociates the repressor complex. Transcription factors (TFs) gain access to their binding sites and, together with the now unmasked E2F activation domain. E2F is then free to activate transcription by contacting basal factors or by contacting histone acetyltransferases, such as CBP, that can alter chromatin structure[4].

 

The function of non-histone proteins is also regulated by HATs/HDACs. p53: HDAC1 impairs the function of p53. p53 is acetylated under conditions of stress or HDAC inhibition by its cofactor CREB binding protein (CBP) and the transcription of genes involved in differentiation is activated. HSP90: HSP90 is a chaperone that complexes with other chaperones, such as p23, to maintain correct conformational folding of its client proteins. HDAC6 deacetylates HSP90. Inhibition of HDAC6 would result in hyperacetylated HSP90, which would be unable to interact with its co-chaperones and properly lead to misfolded client proteins being targeted for degradation via the ubiquitin-proteasome system[5][6].
 

Reference:

[1]. Vega RB, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5.Mol Cell Biol. 2004 Oct;24(19):8374-85.
[2]. Shakespear MR, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011 Jul;32(7):335-43.
[3]. Suliman BA, et al. HDACi: molecular mechanisms and therapeutic implications in the innate immune system.Immunol Cell Biol. 2012 Jan;90(1):23-32. 
[4]. Brehm A, et al. Retinoblastoma protein meets chromatin.Trends Biochem Sci. 1999 Apr;24(4):142-5.
[5]. Butler R, et al. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders.Nat Rev Neurosci. 2006 Oct;7(10):784-96
[6]. Minucci S, et al. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer.Nat Rev Cancer. 2006 Jan;6(1):38-51.

Isoform Specific Products

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.