1. Academic Validation
  2. The Effect of Anti-aging Peptides on Mechanical and Biological Properties of HaCaT Keratinocytes

The Effect of Anti-aging Peptides on Mechanical and Biological Properties of HaCaT Keratinocytes

  • Int J Pept Res Ther. 2018;24(4):577-587. doi: 10.1007/s10989-017-9648-7.
Tomasz Kobiela 1 Małgorzata Milner-Krawczyk 1 Monika Pasikowska-Piwko 2 Konstancja Bobecka-Wesołowska 3 Irena Eris 2 Wojciech Święszkowski 4 Ida Dulinska-Molak 2 4
Affiliations

Affiliations

  • 1 1Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
  • 2 Dr Irena Eris Cosmetic Laboratories, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland.
  • 3 3Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland.
  • 4 4Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland.
Abstract

Atomic force microscopy (AFM) and fluorescence microscopy was applied to determine the influence of the Anti-aging peptides on the morphology and the mechanical properties of keratinocytes. Immortalized human keratinocytes (HaCaT) were treated with two Anti-aging bioactive peptides: Acetyl Tetrapeptide-2 and Acetyl Hexapeptide-50 (Lipotec). The AFM measurement of the keratinocyte stiffness were carried after 48 h exposure at an indentation depth of 200 nm. AFM analysis showed increase of the cell stiffness for cells treated with Acetyl Tetrapeptide-2 (P1) in concentration range. Acetyl Hexapeptide-50 (P2) at concentration of 0.05 µg/ml also increased the stiffness of HaCaT cells but at higher concentrations 0.5 and 5 µg/ml cell stiffness was lower as compared to untreated control. Fluorescence microscopy revealed remodeling of actin filaments dependent on the concentration of P2 peptide. The mechanical response of HaCaT cells treated with P2 peptide corresponds to change of transcription level of ACTN1 and SOD2 which activity was expected to be modulated by P2 treatment.

Keywords

Anti-aging peptides; Atomic force microscopy; Cell stiffness; Cytoskeleton; HaCaT.

Figures
Products