1. Academic Validation
  2. Structure-Based Design of Novel Alkynyl Thio-Benzoxazepinone Receptor-Interacting Protein Kinase-1 Inhibitors: Extending the Chemical Space from the Allosteric to ATP Binding Pockets

Structure-Based Design of Novel Alkynyl Thio-Benzoxazepinone Receptor-Interacting Protein Kinase-1 Inhibitors: Extending the Chemical Space from the Allosteric to ATP Binding Pockets

  • J Med Chem. 2023 Feb 23;66(4):3073-3087. doi: 10.1021/acs.jmedchem.2c02067.
Danni Quan 1 Ruilin Hou 1 Hongming Shao 2 Xinqi Zhang 1 Jianqiang Yu 1 Wannian Zhang 1 2 Hongbin Yuan 3 Chunlin Zhuang 1 2
Affiliations

Affiliations

  • 1 School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
  • 2 School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
  • 3 Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
Abstract

Systemic inflammatory response syndrome (SIRS), characterized by severe systemic inflammation, represents a major cause of health loss, potentially leading to multiple organ failure, shock, and death. Exploring potent RIPK1 inhibitors is an effective therapeutic strategy for SIRS. Recently, we described thio-benzoxazepinones as novel RIPK1 inhibitors and confirmed their anti-inflammatory activity. Herein, we further synthesized novel thio-benzoxazepinones by introducing substitutions on the benzene ring by an alkynyl bridge in order to extend the chemical space from the RIPK1 allosteric to ATP binding pockets. The in vitro cell and kinase assays found that compounds 2 and 29 showed highly potent activity against Necroptosis (EC50 = 3.7 and 3.2 nM) and high RIPK1 inhibitory activity (Kd = 9.7 and 70 nM). Prominently, these two analogues possessed better in vivo anti-inflammatory effects than the clinical candidate GSK'772 and effectively blocked hypothermia and deaths in a TNFα-induced SIRS model.

Figures
Products