1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-18085A
    Quercetin hydrate

    槲皮素

    Inhibitor 98.45%
    Quercetin hydrate 是一种天然黄酮类化合物,可激活或抑制许多蛋白质的活性。Quercetin hydrate 可激活 SIRT1,也可抑制 PI3K,抑制 PI3KγPI3KδPI3KβIC50 分别为 2.4 μM, 3.0 μM, 5.4 μM。
    Quercetin hydrate
  • HY-124760
    hSMG-1 inhibitor 11e Inhibitor 99.94%
    hSMG-1 inhibitor 11e 是一种有效的选择性的 hSMG-1 激酶抑制剂,其 IC50 值 <0.05 nM。hSMG-1 inhibitor 11e 对 hSMG-1 的选择性比 mTOR (IC50 为 45 nM),PI3Kα/γ (IC50 为 61 nM 和 92 nM) 和 CDK1/CDK2 (IC50 为 32 μM 和 7.1 μM) 高 900 倍。
    hSMG-1 inhibitor 11e
  • HY-15177
    PF-04691502 Inhibitor 99.91%
    PF-04691502是有效和选择性的 PI3KmTOR 的抑制剂。 PF-04691502与人PI3Kα,β,δ,γ和mTOR结合的 Ki 分别为1.8,2.1,1.6,1.9和16 nM。
    PF-04691502
  • HY-15449
    Kaempferide

    山奈素

    Activator 99.80%
    Kaempferide 是具有口服活性的黄酮醇,可以从 Hippophae rhamnoides L 中分离得到。Kaempferide 有抗癌、抗炎症、抗氧化、抗糖尿病、抗肥胖、抗高血压和神经保护等活性。Kaempferide 可以诱导细胞凋亡 (apoptosis)。Kaempferide 通过抗氧化来促进成骨,可以用于骨质疏松的研究。
    Kaempferide
  • HY-12279
    Umbralisib Inhibitor 98.94%
    Umbralisib (TGR-1202) 是一种口服有效、选择性的 PI3Kδ 和 酪蛋白激酶-1-ε (CK1ε) 双抑制剂,其 EC50 分别为 22.2 nM 和 6.0 μM。Umbralisib 显示出对慢性淋巴细胞白血病 (CLL) T 细胞独特的免疫调节作用。Umbralisib 可用于血液系统恶性肿瘤的研究。
    Umbralisib
  • HY-P1410B
    D-GsMTx4 Inhibitor 99.59%
    D-GsMTx4 是一种蜘蛛肽和 GsMTx4 (HY-P1410) 的 D 对映体。D-GsMTx4 抑制机械敏感离子通道 Piezo2。D-GsMTx4 抑制 [Ca2+]i 升高。D-GsMTx4 抑制 mTORPI3K-Akt 信号通路。D-GsMTx4 抑制机械性异常性疼痛和热痛觉过敏。D-GsMTx4 可用于机械应力、慢性疼痛和特发性肺纤维化研究。
    D-GsMTx4
  • HY-50847
    ZSTK474 Inhibitor 99.71%
    ZSTK474 是一种 ATP 竞争性的泛 I 类 PI3K 抑制剂,抑制 PI3KαPI3KβPI3KδPI3KγIC50 分别为 16 nM,44 nM,4.6 nM 和 49 nM。
    ZSTK474
  • HY-10344
    AZD 6482 Inhibitor 99.93%
    AZD 6482 (KIN-193) 是一种有效的选择性 p110β 抑制剂,IC50 为 0.69 nM。
    AZD 6482
  • HY-P1925A
    GO-203 TFA Inhibitor 99.28%
    GO-203 TFA 是一种有效的 MUC1-C 癌蛋白抑制剂。GO-203 TFA 是一种全 D 氨基酸肽,由与 CQCRRKN 基序连接的聚 R 转导结构域组成,该基序与 MUC1-C 胞质尾部结合并阻断 MUC1-C 同二聚化。GO-203 TFA 通过抑制 PI3K-AKT-S6K1 途径下调 TIGAR (TP53 诱导的糖酵解和凋亡调节剂) 蛋白合成。GO-203 TFA 诱导 ROS 的产生和线粒体跨膜电位的丧失。GO-203 TFA 可抑制体外结肠癌细胞和裸鼠异种移植物的生长。
    GO-203 TFA
  • HY-12513
    Samotolisib Inhibitor 99.27%
    Samotolisib (LY3023414) 有效且选择性地抑制 PI3KαPI3KβPI3KδPI3KγDNA-PK,和 mTORIC50 分别为 6.07 nM,77.6 nM,38 nM,23.8 nM,4.24 nM,和 165 nM。在低纳摩尔浓度下,Samotolisib 有效抑制 mTORC1/2
    Samotolisib
  • HY-P0118B
    Disitertide diammonium Inhibitor 99.53%
    Disitertide (P144) diammonium 是转化生长因子 TGFβ1 的多肽抑制剂,特异性的阻断其与受体间的相互作用。Disitertide diammonium 也是PI3K 的抑制剂和凋亡 (apoptosis) 诱导剂。
    Disitertide diammonium
  • HY-102031
    Linperlisib Inhibitor 98.91%
    Linperlisib (YY-20394) 是一种有效的,具有口服活性的,效选择性 PI3Kδ 的抑制剂,来自专利 WO 2015055071 A1,化合物实例 10,IC50 值为 6.4 nM。
    Linperlisib
  • HY-12046
    PIK-93 Inhibitor 99.81%
    PIK-93 是一种合成的,有效的 PI4KIIIβ 抑制剂,IC50 值为 19 nM,同时可抑制 PI3KγPI3Kα 的活性,IC50 值分别为 16 nM 和 39 nM。
    PIK-93
  • HY-13532
    AS-252424 Inhibitor 99.66%
    AS-252424 是一种有效的选择性 PI3Kγ 抑制剂,IC50 为 30±10 nM。
    AS-252424
  • HY-12794
    Vps34-PIK-III Inhibitor 99.63%
    Vps34-PIK-III 是一种具有口服活性和选择性的 VPS34 抑制剂 (IC50=18 nM)。Vps34-PIK-III 能有效抑制自噬,可作为分子工具使用。Vps34-PIK-III 也是一种 PI3K 抑制剂,能抑制肝脏癌症干细胞 (CSCs) 基因的表达。
    Vps34-PIK-III
  • HY-N0448
    10-Gingerol

    10-姜酚

    Inhibitor 99.66%
    10-Gingerol 是一种 AMPK 激动剂,发现于生姜鲜根茎油树脂中,具有抗炎、抗氧化和抗增殖活性。10-Gingerol 抑制新生内膜增生,抑制血管平滑肌细胞增殖。10-Gingerol 对 DPPH 自由基的清除活性的 IC50 值 10.47 μM,对超氧自由基的清除活性的 IC50 值 1.68 μM,对羟基自由基的清除活性的 IC50 值 1.35 μM。10-Gingerol 对 MDA-MB-231 肿瘤细胞株增殖有抑制作用,IC50 值为 12.1 μM。10-Gingerol 通过靶向 MDA-MB-231/IR 细胞的 PI3K/Akt 信号通路抑制增殖、迁移、侵袭和诱导凋亡 (apoptosis)。10-Gingerol 有望用于溃疡性结肠炎的研究。
    10-Gingerol
  • HY-12330
    AZD8186 Inhibitor 99.95%
    AZD8186 是一种 PI3K 抑制剂,抑制 PI3Kβ (IC5050=4 nM),PI3Kδ (IC5050=12 nM),PI3Kα (IC50=35 nM) 和 PI3Kγ (IC50=675 nM)。
    AZD8186
  • HY-10114
    TGX-221 Inhibitor 99.74%
    TGX-221 是一种高效的、选择性的、细胞膜渗透的 PI3K p110β 抑制剂,常用于癌症研究。
    TGX-221
  • HY-12868
    Bimiralisib Inhibitor 98.62%
    Bimiralisib (PQR309) 是一种有效的,可渗透脑的,PI3K/mTOR 抑制剂,抑制 PI3Kα, PI3Kδ, PI3Kβ, PI3KγmTORIC50 分别为 33 nM,451 nM,661 nM,708 nM 和 89 nM。Bimiralisib 是 mTORC1mTORC2 抑制剂。
    Bimiralisib
  • HY-13246
    Apitolisib Inhibitor 99.29%
    Apitolisib (GDC-0980; GNE 390; RG 7422) 是一种口服有效的 PI3KmTOR (TORC1/2) 激酶抑制剂,抑制 PI3Kα/PI3Kβ/PI3Kδ/PI3Kγ 的活性,IC50 值为 5 nM/27 nM/7 nM/14 nM。 抑制mTORKi 为 17 nM。
    Apitolisib
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.