1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-109633
    PI3K-IN-18 Inhibitor ≥99.0%
    PI3K-IN-18 (Compound 1) 是一种 PI3K 抑制剂,也能够有效的抑制同源酶 mTOR。PI3K-IN-18 对 mTOR 和 PI3K-α 的 IC50 值分别为 49 nM 和 41 nM。
    PI3K-IN-18
  • HY-122665A
    HTH-01-091 TFA Inhibitor 99.48%
    HTH-01-091 TFA 是一种强效且选择性的 maternal embryonic leucine zipper kinase (MELK) 抑制剂,其 IC50 为 10.5 nM。HTH-01-091 TFA 还能抑制 PIM1/2/3RIPK2DYRK3smMLCKCLK2。HTH-01-091 TFA 可用于乳腺癌研究。
    HTH-01-091 TFA
  • HY-N2517
    Dihydroevocarpine Inhibitor 99.62%
    Dihydroevocarpine 通过抑制 mTORC1/2 活性诱导急性髓系白血病细胞毒性。
    Dihydroevocarpine
  • HY-P3072
    Mastoparan 17 Control 98.15%
    Mastoparan 17 是一种十四肽。Mastoparan 17是 Mastoparan (HY-P0246) 的非活性类似物。
    Mastoparan 17
  • HY-15271A
    WYE-687 dihydrochloride Inhibitor ≥98.0%
    WYE-687 dihydrochloride 是一种 ATP 竞争性的 mTOR 抑制剂,IC50 为 7 nM。WYE-687 dihydrochloride 抑制 mTORC1mTORC2 活化。WYE-687 也抑制 PI3KαPI3KγIC50 分别为 81 nM 和 3.11 μM。
    WYE-687 dihydrochloride
  • HY-N0486S4
    L-Leucine-d7

    L-亮氨酸 d7

    Activator 99.91%
    L-Leucine-d7 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d<sub>7</sub>
  • HY-N0486S12
    L-Leucine-d2

    L-亮氨酸 d2

    Activator ≥99.0%
    L-Leucine-d2 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d<sub>2</sub>
  • HY-137996
    Dehydrovomifoliol Inhibitor 98.88%
    Dehydrovomifoliol 是 AKT/mTOR 的双重抑制剂。Dehydrovomifoliol 通过抑制 AKT/mTOR 信号通路来减少脂质积累和脂肪生成。Dehydrovomifoliol用于非酒精性脂肪性肝病 (NAFLD) 的研究。
    Dehydrovomifoliol
  • HY-156027
    SIRT6-IN-3 Inhibitor 98.19%
    SIRT6-IN-3 (compound 8a) 是 SIRT6 的选择性抑制剂 (IC50 为 7.49 μM)。SIRT6-IN-3 抑制胰腺导管腺癌 (PDAC) 细胞增殖并诱导细胞凋亡 (apoptosis)。SIRT6-IN-3 通过阻止 DNA 损伤修复来增加吉西他滨 (HY-17026) 对癌细胞的敏感性。SIRT6-IN-3 用于胰腺癌研究。
    SIRT6-IN-3
  • HY-N5136
    25(R,S)-Ruscogenin Inhibitor 99.83%
    Ruscogenin通过调节 PI3K/Akt/mTOR 信号通路,降低 MMP-2、MMP-9、uPA、VEGF 和 HIF-1α 的表达,抑制肝癌转移; Ruscogenin 通过抑制 TLR4 信号通路减轻 LPS 诱导的肺内皮细胞凋亡。
    25(R,S)-Ruscogenin
  • HY-N1244
    Sarmentosin Inhibitor
    Sarmentosin 是 Nrf2 的激活剂。Sarmentosin 抑制人肝癌细胞的 mTOR 信号通路,诱导自噬依赖性细胞凋亡。
    Sarmentosin
  • HY-156432
    ALK-IN-26 Inhibitor 99.87%
    ALK-IN-26 (compound 4a) 是 ALK 抑制剂,对 ALK 酪氨酸激酶的 IC50 值为7.0 μM。ALK-IN-26 有良好的药代动力学特性和血脑屏障通透性。ALK-IN-26 能够引起细胞凋亡、自噬和坏死。ALK-IN-26 能够用于胶质母细胞瘤研究。
    ALK-IN-26
  • HY-N2423
    Sinigrin hydrate

    黑芥子硫苷酸钾一水

    Inhibitor 99.77%
    Sinigrin (Allyl-glucosinolate) hydrate 是一种口服有效的存在于十字花科植物中的硫代葡萄糖苷。Sinigrin hydrate 具有抗癌、抗菌、抗真菌、抗炎抗氧化和抑制脂肪合成等多种活性。Sinigrin hydrate 可用于肿瘤、炎症性和代谢性等疾病的研究。
    Sinigrin hydrate
  • HY-147284
    PI3K-IN-37 Inhibitor ≥99.0%
    PI3K-IN-37 (Example 84.1) 是一种 PI3K α/β/δ 抑制剂,其 IC50 分别为 6、8、4 nM。PI3K-IN-37 可抑制mTOR (IC50=4 nM)。
    PI3K-IN-37
  • HY-123849
    SN32976 Inhibitor 99.49%
    SN32976 是一种有效的选择性 I 类 PI3KmTOR 抑制剂,对 PI3KαPI3KβPI3KγPI3KδmTORIC50 值分别为 15.1 nM、461 nM、110 nM、134 nM 和 194 nM。SN32976 在其他 442 种激酶中表现出高选择性。SN32976 具有抗癌活性。
    SN32976
  • HY-10620
    PI3K-IN-22 Inhibitor 99.50%
    PI3K-IN-22 是一种 PI3Kα/mTOR 双重激酶抑制剂。PI3K-IN-22 对 PI3KαmTORIC50s 值分别为 0.9、0.6 nM。PI3K-IN-22 可用于癌症研究。
    PI3K-IN-22
  • HY-N0109R
    Salidroside (Standard)

    红景天苷 (标准品);

    Activator
    Salidroside (Standard) 是 Salidroside 的分析标准品。本产品用于研究及分析应用。Salidroside (Rhodioloside) 是一种脯氨酰内肽酶 (prolyl endopeptidase) 抑制剂。Salidroside 可通过激活 mTOR 信号缓解肿瘤恶病质小鼠模型中的恶病质症状。Salidroside 还能通过增强 PINK1/Parkin 介导的线粒体自噬来保护多巴胺能神经元。
    Salidroside (Standard)
  • HY-10219S1
    Rapamycin-13C,d3

    雷帕霉素; 西罗莫司-13C,d3

    Inhibitor
    Rapamycin 是一种有效且特异性的 mTOR 抑制剂,作用于 HEK293 细胞,抑制 mTORIC50 为 0.1 nM。Rapamycin 与 FKBP12 结合且抑制 mTORC1。Rapamycin 还是一种自噬 (autophagy) 激活剂,免疫抑制剂。
    Rapamycin-<sup>13</sup>C,d<sub>3</sub>
  • HY-U00326
    PI3Kα/mTOR-IN-1 Inhibitor 99.30%
    PI3Kα/mTOR-IN-1 是一种有效的 PI3Kα/mTOR 双重抑制剂,在细胞实验中对 PI3KαIC50 值为 7 nM,在体外酶实验中对 mTORPI3KαKi 值分别为 10.6 nM 和 12.5 nM。
    PI3Kα/mTOR-IN-1
  • HY-10219G
    Rapamycin (GMP)

    雷帕霉素 (GMP)

    Inhibitor
    Rapamycin (Sirolimus) (GMP) 是 GMP 级别的 Rapamycin (HY-10219)。GMP 级别的小分子可用做细胞疗法中的辅助试剂。Rapamycin 是一种有效且特异性的 mTOR 抑制剂。
    Rapamycin (GMP)
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.