1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-155721
    22-(4′-py)-JA Inhibitor
    22-(4′-py)-JA 是久那霉素 A (JA) 的半合成衍生物,能够从泰国蓝海绵 (Xestospongia sp.) 中分离得到。22-(4′-py)-JA 具有抗转移活性,能够抑制 AKT/mTOR/p70S6K 信号传导。22-(4′-py)-JA 抑制人脐静脉内皮细胞 (HUVEC) 中的肿瘤细胞侵袭和管形成,下调金属蛋白酶(MMP-2 和 MMP-9)、缺氧诱导因子 1α (HIF-1α) 和血管内皮生长因子 (VEGF)。22-(4′-py)-JA 对非小细胞肺癌 (NSCLC) 具有有效抗癌活性。
    22-(4′-py)-JA
  • HY-N1338
    Royleanone Inhibitor
    Royleanone 是一种从植物中分离出来的二萜类化合物,通过诱导细胞周期停滞和线粒体介导的细胞凋亡来抑制癌细胞的增殖,还抑制细胞迁移潜能,抑制 LNCaP 前列腺癌细胞中的 mTOR/PI3/AKT 信号通路。
    Royleanone
  • HY-N0486S5
    L-Leucine-2-13C

    L-亮氨酸 2-13C

    Activator
    L-Leucine-2-13C 是带有 13C 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-2-<sup>13</sup>C
  • HY-172816
    Carbonic anhydrase inhibitor 32 Inhibitor
    Carbonic anhydrase inhibitor 32 (compound 5B) 是一种具有口服活性和选择性的 hCA(碳酸酐酶)II/VII 抑制剂,对 hCA II、hCA VII 和 hCA I 的 Ki 值分别为 6.3 nM、10.1 nM 和 681 nM。Carbonic anhydrase inhibitor 32 通过降低 mTOR 激活,提高海马 KCC2 水平显示出神经保护和抗惊厥的潜力。
    Carbonic anhydrase inhibitor 32
  • HY-N0281R
    Daphnetin (Standard)

    瑞香素 (Standard)

    Inhibitor
    Daphnetin (Standard) 是 Daphnetin 的分析标准品。本产品用于研究及分析应用。Daphnetin (7,8-dihydroxycoumarin) 是一种香豆素衍生物,可来源于 Genus Daphne,是一种口服有效的蛋白激酶抑制剂 (protein kinase),对 EGFR、PKA 和 PKCIC50 值分别为 7.67 μM、9.33 μM 和 25.01 μM。Daphnetin 触发活性氧诱导的细胞凋亡 (apoptosis) 和通过调节 AMPK/Akt/mTOR 途径诱导细胞保护性自噬(autophagy)。Daphnetin 具有抗炎活性,并抑制 TNF-α、IL-1 、ROS 和 MDA 的产生。Daphnetin 具有杀疟活性。瑞香素可用于类风湿关节炎、癌症和抗疟疾研究。
    Daphnetin (Standard)
  • HY-170912
    Topo I/II-IN-2 Inhibitor
    Topo I/II-IN-2 (Compound 3g) 是一种 Topo ITopo II 抑制剂。Topo I/II-IN-2 对NCI-H446 细胞和 NCI-H104 8细胞的抑制活性的 IC50 值为 1.30 μM和 1.42 μM。Topo I/II-IN-2 诱导线粒体凋亡 (Apoptosis),线粒体功能紊乱,诱导活性生成。Topo I/II-IN-2 抑制 PI3K/Akt/mTOR 通路,在体外阻止 SCLC (小细胞肺癌) 细胞的增殖、侵袭和迁移。
    Topo I/II-IN-2
  • HY-N2217R
    Rotundic acid (Standard)

    铁冬青酸 (Standard)

    Inhibitor
    Rotundic acid (Standard) 是 Rotundic acid 的分析标准品。本产品用于研究及分析应用。Rotundic acid 是一种从铁冬青 (Ilex rotunda Thunb) 中获得的三萜类化合物,可通过 AKT/mTORMAPK 途径在肝细胞癌中诱导 DNA 损伤和细胞凋亡。Rotundic acid 具有抗炎和保护心脏的能力。
    Rotundic acid (Standard)
  • HY-10116
    PI-540 Inhibitor
    PI-540 是双环噻吩并嘧啶衍生物,是口服有效的 PI3K 抑制剂。PI-540 具有抗癌细胞增殖和高组织分布度的特性。PI-540 可抑制 PI3K 不同亚型,IC50s 分别为 10 nM (P110α),3510 nM (P110β),410 nM (P110δ),33110 nM (P110γ)。PI-540 还抑制 mTOR (IC50: 61 nM) 和 DNA-PK (IC50: 525 nM)。
    PI-540
  • HY-N0047R
    Polyphyllin I (Standard)

    重楼皂苷I (Standard)

    Inhibitor
    Polyphyllin I (Standard)是 Polyphyllin I 的分析标准品。本产品用于研究及分析应用。Polyphyllin I 是一种从 Paris polyphylla 中提取的生物活性成分,具有很强的抗肿瘤活性。Polyphyllin I 是 JNK 信号通路的激活剂,也是 PDK1/Akt/mTOR 信号传导的抑制剂。Polyphyllin I 诱导自噬,G2/M 期阻滞和细胞凋亡。
    Polyphyllin I (Standard)
  • HY-108959
    D-87503 Inhibitor
    D-87503 是 PI3k/Akt/mTOR 的有效抑制剂,对 PI3kErk2IC50 分别为 62 nM 和 0.76 μM。D-87503 可有效抑制 PI3k/Akt/mTOR 信号通路的下游靶底物 AktRsk1 激酶。
    D-87503
  • HY-15268
    PP487 Inhibitor
    PP487 是一种酪氨酸激酶/PI(3)Ks 双重抑制剂,其对 DNA-PKmTORHckSrcEGFREphB4PDGFRIC50 值分别为 0.017 μM、0.072 μM、0.004 μM、0.01 μM、0.55 μM、0.22 μM 和 < 0.01 μM。PP487 可以用于癌症的研究。
    PP487
  • HY-161857
    Akt/mTOR-IN-1 Inhibitor
    Akt/mTOR-IN-1 (Compound 8r) 是 AKT/mTOR 信号通路抑制剂,IC50 值为 0.8 µM,具有抗癌活性。Akt/mTOR-IN-1 可以降低 Caspase 3 的表达,并提高自噬蛋白 Cyclin B1 的表达,诱导细胞自噬和凋亡。Akt/mTOR-IN-1 可用于非小细胞肺癌 (NSCLC) 领域研究。
    Akt/mTOR-IN-1
  • HY-RS08810
    MTOR Human Pre-designed siRNA Set A Inhibitor
    MTOR Human Pre-designed siRNA Set A 包括针对 MTOR (Human) 基因的不同区域设计三对 siRNA,以及阴性对照、FAM 标记阴性对照和阳性对照。
    MTOR Human Pre-designed siRNA Set A
    MTOR Human Pre-designed siRNA Set A
  • HY-15901A
    LGB321 monohydrochloride Inhibitor
    LGB321 monohydrochloride 是一种有效的、选择性且具有口服活性的 ATP 竞争性小分子抑制剂,可抑制所有三种 PIM 激酶。LGB321 monohydrochloride 在血液恶性肿瘤来源的多种细胞系中抑制增殖、mTOR-C1 信号通路和 BAD 磷酸化。LGB321 monohydrochloride 可用于血液恶性肿瘤的研究。
    LGB321 monohydrochloride
  • HY-N12124
    Monascuspiloin Inhibitor
    Monascuspiloin (Monascinol) 具有抗雄激素活性,IC50 为 7 μM。Monascuspiloin 抑制 PC-3 和 LNCaP 增殖,IC50 分别为 45 和 47 μM。Monascuspiloin 通过抑制 Akt/mTOR 信号通路诱导 LNCaP 细胞凋亡 (apoptosis),通过激活 AMPK 信号通路诱导 PC-3 自噬 (autophagy),并在 G2/M 期阻滞细胞周期。Monascuspiloin 在小鼠体内表达抗肿瘤活性。
    Monascuspiloin
  • HY-169407
    AKT-IN-24 Inhibitor
    AKT-IN-24 (Compound M17) 是一种 AKT 变构抑制剂,有抗肿瘤活性,和 Trametinib (HY-10999) 联用可靶向 AKT/mTORMEK/ERK 信号通路以及抑制上皮-间质转化,对 TNBC 产生协同抑制作用,促进细胞凋亡并抑制了增殖和迁移。
    AKT-IN-24
  • HY-N0404R
    Sinigrin (Standard)

    黑芥子苷 (Standard)

    Inhibitor
    Sinigrin (Standard) (Allyl-glucosinolate (Standard)) 是 Sinigrin (HY-N0404) 的分析标准品。本产品用于研究及分析应用。Sinigrin (Allyl-glucosinolate) 是一种口服有效的存在于十字花科植物中的硫代葡萄糖苷。Sinigrin 具有抗癌、抗菌、抗真菌、抗炎抗氧化和抑制脂肪合成等多种活性。Sinigrin 可用于肿瘤、炎症性和代谢性等疾病的研究。
    Sinigrin (Standard)
  • HY-172964
    KIM-161 Inhibitor
    KIM-161 是一种 PIK3CA 抑制剂。KIM-161 具有显著的抗增殖活性,对 PI3KCA 突变乳腺癌 MCF7 和 T47D 细胞的 IC50 值分别为 1.428 和 1.562 µM。KIM-161 通过抑制 PI3K/AKT/mTOR 信号通路,诱导 ROS 产生诱导细胞凋亡 (apoptosis) 和细胞周期阻滞。KIM-161 能够用于乳腺癌及其 PI3KCA 突变亚型的研究。
    KIM-161
  • HY-153120
    PI3K/mTOR Inhibitor-13 Inhibitor
    PI3K/mTOR Inhibitor-13 是一种具有口服活性的磷酸肌醇 3-激酶 (PI3K) 和 mTOR 激酶双重抑制剂。PI3K/mTOR Inhibitor-13 在性疾病、实体瘤和特发性肺纤维化 (IPF) 中有潜在应用。
    PI3K/mTOR Inhibitor-13
  • HY-168919
    KRASG12C IN-16 Inhibitor
    KRASG12C IN-16 (Compound SK-17) 是一种选择性、共价且具有口服活性的 KRASG12C 抑制剂。KRASG12C IN-16 可诱导细胞凋亡 (Apoptosis)。KRASG12C IN-16 可有效阻止 MAPKPI3K/mTOR 信号通路的激活。KRASG12C IN-16 显示出对胰腺癌的抗肿瘤活性。
    KRASG12C IN-16
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.