1. Academic Validation
  2. Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance

Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance

  • J Pharmacol Exp Ther. 2014 May;349(2):248-57. doi: 10.1124/jpet.113.208728.
Evgeniy Panzhinskiy 1 Yinan Hua Paul A Lapchak Elena Topchiy Teresa E Lehmann Jun Ren Sreejayan Nair
Affiliations

Affiliation

  • 1 Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, College of Health Sciences, Laramie, Wyoming (E.P., Y.H., J.R., S.N.); Cedars-Sinai Medical Center, Department of Neurology and Neurosurgery, Burns and Allen Research Institute, Los Angeles, California (P.A.L.); and Chemistry Department, University of Wyoming, Laramie, Wyoming (E.T., T.E.L.).
Abstract

Type 2 diabetes is growing at epidemic proportions, and pharmacological interventions are being actively sought. This study examined the effect of a novel neuroprotective curcuminoid, CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-phenol], on glucose intolerance and Insulin signaling in high-fat diet (HFD)-fed mice. C57BL6 mice (5-6 weeks old) were randomly assigned to receive either a HFD (45% fat) or a low-fat diet (LFD, 10% fat) for 24 weeks, together with CNB-001 (40 mg/kg i.p. per day). Glucose tolerance test revealed that the area under the curve of postchallenge glucose concentration was elevated on HF-feeding, which was attenuated by CNB-001. CNB-001 attenuated body weight gain, serum triglycerides, and IL-6, and augmented Insulin signaling [elevated phosphoprotein kinase B (p-Akt), and phosphoinsulin receptor (p-IR)β, lowered endoplasmic reticulum (ER) stress, protein-tyrosine Phosphatase 1B (PTP1B)] and glucose uptake in gastrocnemius muscle of HFD-fed mice. Respiratory quotient, measured using a metabolic chamber, was elevated in HFD-fed mice, which was unaltered by CNB-001, although CNB-001 treatment resulted in higher energy expenditure. In cultured myotubes, CNB-001 reversed palmitate-induced impairment of Insulin signaling and glucose uptake. Docking studies suggest a potential interaction between CNB-001 and PTP1B. Taken together, CNB-001 alleviates obesity-induced glucose intolerance and represents a potential candidate for further development as an antidiabetic agent.

Figures
Products