1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-13847
    GNE-555 Inhibitor
    GNE-555 是一种具有选择性,且代谢稳定的 mTOR 抑制剂 (Ki=1.5 nM),也具有良好的口服生物利用度。GNE-555 对 PC3 和 MCF-7 细胞显示出抗增殖活性,可用于癌症的研究。
    GNE-555
  • HY-101776
    Desmethyl-VS-5584 Inhibitor
    Desmethyl-VS-5584 是 VS-5584 的二甲基类似物,VS-5584 是一种具有吡啶 [2,3-d] 嘧啶结构的有效且有选择性 mTOR/PI3K 双重抑制剂。
    Desmethyl-VS-5584
  • HY-168609
    CRI9 Inhibitor
    CRI9 抑制 c-MET/PI3K/Akt/mTOR 通路,抑制肝癌细胞生长。CRI9 对 HCC 细胞表现出强大的细胞毒性,诱导细胞凋亡
    CRI9
  • HY-162993
    HN2210 Inhibitor
    HN2210 是一种 mTORC2 抑制剂。
    HN2210
  • HY-169022
    4-FPBUA Inhibitor
    4-FPBUA 是地衣酸 (HY-W015883) 的半合成类似物,可以增强基于细胞的血脑屏障 (BBB) 功能,并增加 β 淀粉样蛋白 (Aβ) 在单层细胞中的转运。4-FPBUA 也是 mTOR 的抑制剂,能增强细胞自噬 (Autophagy) 作用,从而在体内逆转 BBB 的破坏,用于阿尔茨海默病的研究。
    4-FPBUA
  • HY-172789
    mTOR inhibitor-27 Inhibitor
    mTOR inhibitor-27 (Compound 7e) 是哺乳动物靶向雷帕霉素 (mTOR) 抑制剂,IC50 值为 5.47 μM。mTOR inhibitor-27 可诱导肿瘤细胞凋亡 (apoptosis),使细胞周期停留在 S 期,从而抑制癌细胞生长。mTOR inhibitor-27 有望用于癌症的研究,如皮肤癌。
    mTOR inhibitor-27
  • HY-141701
    mTOR/HDAC-IN-1 Inhibitor
    mTOR/HDAC-IN-1 (Compound 50) 是一个具有选择性的 mTORHDAC 双重抑制剂,对mTOR和HDAC1的 IC50 分别为0.49和0.91 nM。 mTOR/HDAC-IN-1 可作为抗癌活性分子 (anti-cancer) 进行研究。
    mTOR/HDAC-IN-1
  • HY-113038
    D-α-Hydroxyglutaric acid

    2-羟基-D-谷氨酸; (R)-2-羟基戊二酸

    Inhibitor ≥98.0%
    D-α-Hydroxyglutaric acid ((R)-2-Hydroxyglutarate) 是神经代谢疾病 D-2-羟基戊二酸尿症中积累的主要代谢产物。D-α-Hydroxyglutaric acid 是 α-酮戊二酸 (α-KG) 的弱竞争拮抗剂,可抑制多种 α-KG 依赖性双加氧酶 (dioxygenases),Ki 为 10.87 mM。D-α-Hydroxyglutaric acid 可增加活性氧 (ROS) 的产生。D-α-Hydroxyglutaric acid 还可结合并抑制 ATP 合酶并抑制 mTOR 信号传导。
    D-α-Hydroxyglutaric acid
  • HY-137315S
    TML-6-d3
    TML-6-d3 是 TML-6 的氘代物。 TML-6 是一种口服有效的姜黄素衍生物,抑制 β-淀粉样前体蛋白和 β-淀粉样蛋白 () 的合成。TML-6 上调 Apo E,抑制 NF-κBmTOR,并增加抗氧化 Nrf2 基因的活性。TML-6 具有用于阿尔茨海默氏病 (AD) 研究的潜力。
    TML-6-d<sub>3</sub>
  • HY-N6896R
    Isoviolanthin (Standard)

    异佛来心苷 (Standard)

    Inhibitor
    Isoviolanthin (Standard) 是 Isoviolanthin (HY-N6896) 的分析标准品。本产品用于研究及分析应用。Isoviolanthin 是一种黄酮类糖苷。Isoviolanthin 可从 Dendrobium officinale 中提取。Isoviolanthin 对 KDM6BCHAC2ESCO2IPO4 具有强的结合亲和力。Isoviolanthin 可降低 MMP-2MMP-9。Isoviolanthin 可抑制 TGF-β/SmadPI3K/Akt/mTOR 信号通路。Isoviolanthin 可增加 Fhl3 的表达。Isoviolanthin 具有细胞保护作用。Isoviolanthin 对肝细胞癌具有抗癌活性。
    Isoviolanthin (Standard)
  • HY-N1462R
    Atractyloside potassium salt (Standard)

    苍术苷钾盐 (Standard)

    Inhibitor
    Atractyloside (potassium salt) (Standard)是 Atractyloside (potassium salt) 的分析标准品。本产品用于研究及分析应用。Atractyloside potassium salt 是高效、特异性的线粒体 ADP/ATP 转运 (ADP/ATP transport) 抑制剂。Atractyloside potassium salt 能抑制大鼠心脏线粒体膜的氯离子通道。Atractyloside potassium salt 激活自噬 (autophagy),抑制 ANT2mTOR,促进 p-AMPK 的激活。Atractyloside potassium salt 对非小细胞肺癌有抗癌作用,能抑制肝脏脂肪变性。Atractyloside potassium salt 有肾毒性。
    Atractyloside potassium salt (Standard)
  • HY-168893
    K882 Inhibitor
    K882 (Compound 4e) 是一种 Src 抑制剂,KD 为 0.315 μM。K882 诱导凋亡(Apoptosis)。K882 抑制 XIAPSurvivin。K882 抑制 PI3K/Akt/mTORJak1/Stat3Ras/MAPK 信号通路的激活。K882 对非小细胞肺癌 具有抗肿瘤活性。
    K882
  • HY-168129
    GSK3β/mTOR modulator 1 Inhibitor
    GSK3β/mTOR modulator 1 (derivative 2) 是 GSK3β/mTOR 信号通路调节剂。GSK3β/mTOR modulator 1 可用于急性肺损伤 (ALI) 和炎症研究。
    GSK3β/mTOR modulator 1
  • HY-154958
    mTOR inhibitor-12 Inhibitor
    mTOR inhibitor-12 (Compound 11) 是一种选择性脑渗透性 mTOR 抑制剂,无遗传毒性风险。mTOR inhibitor-12 可用于中枢神经系统疾病的研究。
    mTOR inhibitor-12
  • HY-174379
    KRAS IN-44 Inhibitor
    KRAS IN-44 (Compound S2C2M2) 是一种 PDE6D 降解剂。KRAS IN-44 抑制 PDE6D 依赖性的 KRAS 转运和 KRAS 下游信号通路。KRAS IN-44 下调 EGF 诱导的PI3KAKTmTOR 磷酸化。KRAS IN-44 促进凋亡 (Apoptosis)。KRAS IN-44 对肝母细胞瘤具有抗肿瘤活性。
    KRAS IN-44
  • HY-18953
    mTOR inhibitor-23 Inhibitor
    mTOR inhibitor-23 (compound DHM25) 是一种选择性、竞争性、不可逆的共价 mTOR 抑制剂。mTOR inhibitor-23 的抑制机制主要是通过其与 ATP 口袋内的亲核氨基酸共价相互作用的能力发生的。mTOR inhibitor-23 对三阴性乳腺肿瘤细胞系发挥有效的抗肿瘤活性。
    mTOR inhibitor-23
  • HY-P5984
    Thioether-cyclized helix B peptide, CHBP Inhibitor
    Thioether-cyclized helix B peptide, CHBP 可通过抑制 mTORC1 和激活 mTORC2 诱导的自噬 (autophagy),从而提高代谢稳定性和肾脏保护作用。
    Thioether-cyclized helix B peptide, CHBP
  • HY-174406
    MT-125 Activator
    MT-125 是一种特异性和耐受性良好的非肌肉肌球蛋白 myosin IIA (Ki,NMIIA = 2.7 μM) 和 IIB (EC50 = 1.7 μM) 抑制剂。MT-125 可以穿过血脑屏障。MT-125 通过增加肿瘤细胞内的活性氧 (ROS) 水平诱导铁死亡 ferroptosis 和 DNA 损伤。MT-125 可以增强 PDGFR 信号通路。MT-125 可用于胶质母细胞瘤的研究[1]
    MT-125
  • HY-147285
    PI3K/mTOR Inhibitor-9 Inhibitor
    PI3K/mTOR Inhibitor-9 (Compound 1) 是一种有效的 mTORPI3K 抑制剂,对 mTOR、PI3Kα、PI3Kγ 和 PI3KδIC50 分别为 38 nM、6.6 μM、6.6 μM 和 0.8 μM。
    PI3K/mTOR Inhibitor-9
  • HY-168333
    5-HT6 inverse agonist 1 Inhibitor
    5-HT6 inverse agonist 1 (Compound 33) 是 5-HT6 受体 (5-HT6 receptor) 的拮抗剂,Ki 为 23 nM,Kb 为 6.62 nM。5-HT6 inverse agonist 1 可抑制 5-HT6R 介导的 Cdk5mTOR 信号通路。5-HT6 inverse agonist 1 可在大鼠模型中降低脊神经结扎 (SNL) 诱导的触觉过敏。
    5-HT6 inverse agonist 1
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.