1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-154957
    mTOR inhibitor-11 Inhibitor
    mTOR inhibitor-11 (Compound 9) 是一种可穿透大脑屏障的 mTOR抑制剂(IC50 : 对 pS6 为21 nM)。mTOR inhibitor-11 还抑制 pCHK1 和 PDE4D,IC50分别为17.2和17.0 μM。mTOR inhibitor-11 可用于中枢神经系统疾病研究。
    mTOR inhibitor-11
  • HY-N0486S7
    L-Leucine-1-13C,15N

    L-亮氨酸 1-13C,15N

    Activator ≥98.0%
    L-Leucine-1-13C,15N 是带有 13C 标记和 15N 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-1-<sup>13</sup>C,<sup>15</sup>N
  • HY-N0486S11
    L-Leucine-d

    L-亮氨酸 d1

    Activator
    L-Leucine-d 是 L-Leucine 的氘代物。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-d
  • HY-W339757
    Dioctanoylphosphatidic acid sodium
    Dioctanoylphosphatidic acid sodium 可作为吞噬细胞呼吸爆发的调节剂,作为二酰甘油和溶血磷脂酸的前体,并影响雷帕霉素哺乳动物靶点 (mTOR) 的磷酸化,同时增强用组蛋白去乙酰化酶抑制剂 (HDACI) 抑制的胆囊癌细胞的活力;它是通过磷脂酶 D 的作用从甘油磷脂中衍生出来的。
    Dioctanoylphosphatidic acid sodium
  • HY-14794AS
    Levomilnacipran-d10 hydrochloride Activator
    Levomilnacipran-d10 ((1S,2R)-Milnacipran-d10) hydrochloride 是氘代标记的 Levomilnacipran hydrochloride (HY-B0168B)。Levomilnacipran ((1S,2R)-Milnacipran) hydrochloride 是 Milnacipran (HY-B0168) 的对映异构体,也是能透过血脑屏障的 P-gp 强底物。Levomilnacipran hydrochloride 是 5-羟色胺和去甲肾上腺素再摄取抑制剂,对人去甲肾上腺素转运体 (NET) 和 5-羟色胺转运体 (SERT) 的 IC50 分别为 10.5 nM 和 19.0 nM,Ki 分别为 92.2 nM 和 1.2 nM。Levomilnacipran hydrochloride 具有抗抑郁与抗焦虑活性。Levomilnacipran hydrochloride 可用于抑郁症的研究。
    Levomilnacipran-d<sub>10</sub> hydrochloride
  • HY-137996
    Dehydrovomifoliol Inhibitor
    Dehydrovomifoliol 是 AKT/mTOR 的双重抑制剂。Dehydrovomifoliol 通过抑制 AKT/mTOR 信号通路来减少脂质积累和脂肪生成。Dehydrovomifoliol用于非酒精性脂肪性肝病 (NAFLD) 的研究。
    Dehydrovomifoliol
  • HY-115869
    RMC-4529 Inhibitor
    RMC-4529 在 mTOR 激酶细胞实验中,对 p-4E-BP1-(T37/46) 的 IC50 值为 1.0 nM。
    RMC-4529
  • HY-172678
    PUC-10 Inhibitor
    PUC-10 是一种 5-HT6 受体拮抗剂,Ki 为 14.6 nM,IC50 为 32 nM。计算机模拟预测,PUC-10 具备口服活性且能透过血脑屏障。PUC-10 能够通过抑制 mTOR 途径诱导 SH-SY5Y 细胞自噬 (autophagy)。PUC-10 可用于神经系统疾病的研究。
    PUC-10
  • HY-127067
    Yuanhuadin Inhibitor
    Yuanhuadin 提取自芫花 Daphne genkwa,通过抑制 Akt/mTOREGFR 通路具有抗肿瘤活性,同时也可以诱导细胞周期停滞和流产。
    Yuanhuadin
  • HY-125535
    OSU-53 Inhibitor
    OSU-53 是一种口服有效的 AMPK 激活剂 (EC50: 0.3 μM),同时也是一种直接的 mTOR 抑制剂。OSU-53 诱导自噬 (Autophagy) 并增加 LC3 I 转化为 LC3 II 的比例。OSU-53 还通过抑制脂肪酸生物合成,增强 PGC1α 和 NRF-1 的表达,从而调节能量稳态,将代谢转向氧化。OSU-53 在多种肿瘤模型中显示出抗肿瘤活性,如乳腺癌和甲状腺癌。
    OSU-53
  • HY-146200
    PI3K/mTOR Inhibitor-8 Inhibitor
    PI3K/mTOR Inhibitor-8 (Compound 18b) 是一种 PI3KmTOR 双重抑制剂,对 PI3KαmTORIC50 分别为 0.46 nM 和 12 nM。PI3K/mTOR Inhibitor-8 诱导 HCT-116 细胞凋亡 (apoptosis),在 G1/S 期阻滞细胞周期。
    PI3K/mTOR Inhibitor-8
  • HY-N0107R
    Cyclovirobuxine D (Standard)

    黄杨碱 (Standard)

    Inhibitor
    Cyclovirobuxine D (Standard)是 Cyclovirobuxine D 的分析标准品。本产品用于研究及分析应用。Cyclovirobuxine D (CVB-D) 是中药黄杨 Buxus microphylla 的主要活性成分。Cyclovirobuxine D 诱导自噬并减弱 AktmTOR 的磷酸化。Cyclovirobuxine D 通过抑制细胞周期进程和诱导线粒体介导的细胞凋亡 apoptosis 抑制癌细胞的增
    Cyclovirobuxine D (Standard)
  • HY-151915
    ATR-IN-20 Inhibitor
    ATR-IN-20 是一种有效的 ATR (ATM/ATR) 抑制剂,IC50 为 3 nM。ATR-IN-20 对 mTOR 具有抑制作用 (IC50 为 18 nM),同时对 PI3Kα (100 nM)、ATM (100 nM) 和 DNA-PK (662 nM) 显示出良好的选择性。ATR-IN-20 具有出色的药代动力学特征 (F = 30%),并具有抗癌作用。
    ATR-IN-20
  • HY-170656
    PI3K/mTOR Inhibitor-17 Inhibitor
    PI3K/mTOR Inhibitor-17 (compound 5nh) 是 PI3K/mTOR 的有效抑制剂,对 PI3KαmTOR 的抑制剂浓度分别为 0.45 nM 和 2.9 nM。PI3K/mTOR 抑制剂-17 在癌症研究中发挥着重要作用。
    PI3K/mTOR Inhibitor-17
  • HY-172259
    Toyaburgine Inhibitor
    Toyaburgine 是一种具有抗肿瘤活性的异喹啉化合物。Toyaburgine 通过破坏 PI3K/AKT/mTOR 信号通路,在 MIA PaCa-2 细胞中引起显着的形态变化和癌细胞死亡,同时还抑制细胞迁移和集落形成。Toyaburgine 有望用于胰腺癌研究。
    Toyaburgine
  • HY-14794A
    Levomilnacipran Activator
    Levomilnacipran ((1S,2R)-Milnacipran) 是 Milnacipran (HY-B0168) 的对映异构体,也是能透过血脑屏障的 P-gp 强底物。Levomilnacipran 是 5-羟色胺和去甲肾上腺素再摄取抑制剂,对人去甲肾上腺素转运体 (NET) 和 5-羟色胺转运体 (SERT) 的 IC50 分别为 10.5 nM 和 19.0 nM,Ki 分别为 92.2 nM 和 1.2 nM。Levomilnacipran hydrochloride 具有抗抑郁与抗焦虑活性。Levomilnacipran 可用于抑郁症的研究。
    Levomilnacipran
  • HY-159517
    PI3K/Akt/mTOR-IN-5 Inhibitor
    PI3K/Akt/mTOR-IN-5 (compound D3) 是一种 Pseudolaric Acid B (HY-N6939) 的衍生物,具有抗肿瘤活性。PI3K/Akt/mTOR-IN-5 通过 PI3K/AKT/mTORSTAT3/GPX4 途径抑制肿瘤细胞的过度增殖。此外,PI3K/Akt/mTOR-IN-5 有效抑制 EDU 阳性率,减少集落形成,使 HCT-116 细胞处于 S 期和 G2/M 期,诱导细胞凋亡 (apoptosis)。
    PI3K/Akt/mTOR-IN-5
  • HY-P10323
    T7 Peptide Inhibitor
    T7 Peptide 是内皮细胞特异性抑制剂。T7 Peptide 通过与 αVβ3 整合素相互作用,抑制内皮细胞的 FAKPI3-kinasePKB/AktmTOR 信号通路,从而抑制蛋白质合成并诱导细胞凋亡。
    T7 Peptide
  • HY-172175
    HYS-072 Inhibitor
    HYS-072 是一种具有口服活性的白杨素 (HY-14589) 衍生物,具有抗肿瘤活性。 HYS-072 通过抑制 PI3K/AKT/mTOR 信号通路诱导细胞凋亡 (Apoptosis) 和自噬 (Autophagy),并在体内异种移植模型中通过调节自噬相关通路抑制肿瘤生长。HYS-072 可用于三阴性乳腺癌的研究。
    HYS-072
  • HY-173367
    Anticancer agent 271 Inhibitor
    Anticancer agent 271 (compound 5C)对肺癌 (A549)、结肠癌 (Caco-2) 细胞系和人肺成纤维细胞 (WI38) 具有抗增殖活性,对 A549 细胞的 IC50 值为 9.18 μM。Anticancer agent 271 可下调 PI3KmTOR 基因表达,可用于癌症研究。
    Anticancer agent 271
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.