1. Academic Validation
  2. Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)₂ as a Preferred Precursor, [Bu₄N]₂HPO₄ Stabilizer, plus the Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions

Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)₂ as a Preferred Precursor, [Bu₄N]₂HPO₄ Stabilizer, plus the Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions

  • Langmuir. 2016 Apr 19;32(15):3699-716. doi: 10.1021/acs.langmuir.6b00013.
Saim Özkar 1 2 Richard G Finke 1
Affiliations

Affiliations

  • 1 Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523 United States.
  • 2 Department of Chemistry, Middle East Technical University , 06800 Ankara, Turkey.
Abstract

Palladium(0) nanoparticles continue to be important in the field of catalysis. However, and despite the many prior reports of Pd(0)n nanoparticles, missing is a study that reports the kinetically controlled formation of Pd(0)n nanoparticles with the simple stabilizer [Bu4N]2HPO4 in an established, balanced formation reaction where the kinetics and mechanism of the nanoparticle-formation reaction are also provided. It is just such studies that are the focus of the present work. Specifically, the present studies reveal that Pd(acac)2, in the presence of 1 equiv of [Bu4N]2HPO4 as stabilizer in propylene carbonate, serves as a preferred precatalyst for the kinetically controlled nucleation following reduction under 40 ± 1 psig initial H2 pressure at 22.0 ± 0.1 °C to yield 7 ± 2 nm palladium(0) nanoparticles. Studies of the balanced stoichiometry of the Pd(0)n nanoparticle-formation reaction shows that 1.0 Pd(acac)2 consumes 1.0 equiv of H2 and produces 1.0 equiv of Pd(0)n while also releasing 2.0 ± 0.2 equiv of acetylacetone. The inexpensive, readily available HPO4(2-) also proved to be as effective a Pd(0)n nanoparticle stabilizer as the more anionic, sterically larger, "Gold Standard" stabilizer P2W15Nb3O62(9-). The kinetics and associated minimal mechanism of formation of the [Bu4N]2HPO4-stabilized Pd(0)n nanoparticles are also provided, arguably the most novel part of the present studies, specifically the four-step mechanism of nucleation (A → B, rate constant k1), autocatalytic surface growth (A + B → 2B, rate constant k2), bimolecular agglomeration (B + B → C, rate constant k3), and secondary autocatalytic surface growth (A + C → 1.5C, rate constant k4), where A is Pd(acac)2, B represents the growing, smaller Pd(0)n nanoparticles, and C represents the larger, most catalytically active Pd(0)n nanoparticles. Additional details on the mechanism and catalytic properties of the resultant Pd(0)n·HPO4(2-) nanoparticles are provided in this work.

Figures
Products