1. Academic Validation
  2. Assessing the Nature of Human Brain-Derived Extracellular Vesicles on Synaptic Activity Via the Development of an Air-liquid Microfluidic Platform

Assessing the Nature of Human Brain-Derived Extracellular Vesicles on Synaptic Activity Via the Development of an Air-liquid Microfluidic Platform

  • Adv Sci (Weinh). 2025 Oct 5:e11194. doi: 10.1002/advs.202511194.
Corentin Bernou 1 Yukiko Iwasaki 2 Willy Lutz 1 Glaucia Almeida 1 Emilie Béchard 1 François Delalande 3 4 Magali Rompais 3 4 Jules Bouget 1 Barbara Gorda 1 Chantal Cazevieille 5 Yonis Bare 1 Christine Carapito 3 4 Sophie Colomb 6 Gowrishankar Ganesh 2 Raphael Gaudin 1
Affiliations

Affiliations

  • 1 Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ Montpellier, CNRS, 1919 route de Mende, Montpellier, 34293, France.
  • 2 UM-CNRS Laboratoire D'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, Montpellier, 34095, France.
  • 3 Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, Strasbourg, 67200, France.
  • 4 Infrastructure Nationale de Protéomique ProFI─UAR2048, Strasbourg, 67087, France.
  • 5 INM, INSERM, Univ Montpellier, Montpellier, 34000, France.
  • 6 Equipe de droit pénal et sciences forensiques de Montpellier (EDPFM), Univ Montpellier, Département de médecine légale, Pôle Urgences, Centre Hospitalo-Universitaire de Montpellier, 371 Avenue du Doyen Gaston Giraud, Montpellier, 34295, France.
Abstract

Brain-Derived Extracellular Vesicles (BDEVs) have been associated with important roles in functional neuron networks. However, the various models that have been used to study these roles fail to account for all the specificities of the human brain. This study presents a microfluidic platform capable of injecting and/or collecting BDEVs from Organotypic culture of Post-mortem Adult human Brain explants (OPAB) cultured at the air-liquid interface, while measuring electrical activity in real-time on 3D-microelectrode arrays (MEA). The platform design and custom-made program to control the system allows the automatic collection of BDEVs over days. Mass spectrometry analyses highlight that BDEVs are significantly enriched with synaptic proteins, such as Neural cell adhesion molecule, Syntaxin-1A, and Synaptopodin, known to regulate synaptic plasticity. Using the MEA-embedded air-liquid microfluidic platform, it is shown that BDEVs injection on OPAB induces a significant decrease of local field potential compared to mock conditions, in particular for high frequency oscillations. Finally, a machine learning framework, experimentally validated, revealed that the co-treatment of OPAB with BDEVs and GW4869, an inhibitor of exosome production, can counteract electrical perturbations induced by BDEVs alone. Together, this work provides innovative methodological developments, that contributed to reveal the diverse biological functions of BDEVs on neural activity.

Keywords

exosome; local field potential; machine learning; neural plasticity; proteomics.

Figures
Products