1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-10812
    GNE-490 Inhibitor
    GNE-490 是一种 (thienopyrimidin-2-yl)aminopyrimidine,一种有效的泛 PI3K 抑制剂,对 PI3Kα、PI3Kβ、PI3Kδ 和 PI3KγIC50 分别为 3.5 nM、25 nM、5.2 nM、15 nM。GNE-490 对 mTOR 具有 >200 倍的选择性 (IC50=750 nM)。GNE-490 显示出对 MCF7.1 乳腺癌异种移植模型有抑制功效。
    GNE-490
  • HY-114428
    P110δ-IN-1 Inhibitor 98.44%
    P110δ-IN-1 是一种有效、选择性的 P110δ 抑制剂,来自专利 WO 2014055647 A1,IC50 值为 8.4 nM。
    P110δ-IN-1
  • HY-111383
    LX2343 Inhibitor 99.80%
    LX2343 是一种 BACE1 酶抑制剂,IC50 值为 11.43±0.36 μM。LX2343 是一种非 ATP 竞争性的 PI3K 抑制剂,IC50 为 15.99±3.23 μM。LX2343 刺激自噬促进 清除。
    LX2343
  • HY-11105
    Pilaralisib analogue Inhibitor 99.74%
    Pilaralisib analogue (XL147 analogue) 是一种代表性的选择性 PI3Kα 抑制剂,详细信息请参考专利文献 WO2012006552A1 中 Table 1 中的化合物 147。
    Pilaralisib analogue
  • HY-147419
    Vulolisib Inhibitor 99.60%
    Vulolisib 是一种有效且具有口服活性的磷脂酰肌醇 3 激酶 (PI3K) 抑制剂,对 PI3Kα、PI3Kβ、PI3Kγ 和 PI3KδIC50 分别为 0.2 nM、168 nM、90 nM 和 49 nM。对癌细胞具有抗增殖活性,也具有抗肿瘤活性。
    Vulolisib
  • HY-124036
    DS-7423 Inhibitor 99.75%
    DS-7423 是 PI3KmTOR 的双抑制剂,其对 PI3KαmTORIC50 值分别为15.6 nM 和 34.9 nM。DS-7423 具有抗癌活性。
    DS-7423
  • HY-18085G
    Quercetin (GMP)

    槲皮素 (GMP)

    Inhibitor
    Quercetin GMP 是 GMP 级别的 Quercetin (HY-18085)。GMP 级别的小分子可用做细胞疗法中的辅助试剂。Quercetin 是一种类黄酮抗氧化剂,也是 PI3K 的抑制剂和 SIRT1 的激活剂。
    Quercetin (GMP)
  • HY-131345A
    (S)-PI3Kα-IN-4 Inhibitor 99.77%
    (S)-PI3Kα-IN-4 是一种有效的 PI3Kα 抑制剂,IC50 为 2.3 nM。(S)-PI3Kα-IN-4 对 PI3Kα 的选择性分别比 PI3KβPI3KδPI3Kγ 高38.3,4.25 和 4.93 倍。(S)-PI3Kα-IN-4 可用于癌症的研究。
    (S)-PI3Kα-IN-4
  • HY-18085S1
    Quercetin-d3

    槲皮素 d3

    Inhibitor
    Quercetin-d3 是 Quercetin 的氘代物。Quercetin 是一种天然黄酮类化合物,可激活或抑制许多蛋白质的活性。Quercetin 可激活 SIRT1,也可抑制 PI3K,抑制 PI3KγPI3KδPI3KβIC50 分别为 2.4 μM, 3.0 μM, 5.4 μM。
    Quercetin-d<sub>3</sub>
  • HY-149669
    PH14 Inhibitor 99.29%
    PH14 是一种 PI3K/HDAC 双重抑制剂,其对 PI3KαHDAC3IC50 值分别为 20.3 nM 和 24.5 nM。PH14 具有抗增殖活性,还能诱导 Jeko-1 细胞凋亡。PH14 可用于癌症的研究,如淋巴瘤。
    PH14
  • HY-133907
    NVS-PI3-4 Inhibitor 99.40%
    NVS-PI3-4 是一种特异性 PI3Kγ 抑制剂。 NVS-PI3-4 可用于过敏,炎症和癌症疾病的研究。
    NVS-PI3-4
  • HY-B1550
    Benzoin

    安息香

    Inhibitor 99.84%
    Benzoin (DL-Benzoin) 是一种天然香脂,是一种具有抗癌作用的 PI3Kα 抑制剂。Benzoin 抑制结肠癌细胞系 (HCT-116) 的生长。Benzoin 可用作食品添加剂。
    Benzoin
  • HY-165099
    C-8 Ceramide-1-phosphate

    C-8-神经酰胺-1-磷酸

    Inducer ≥99.0%
    C-8 Ceramide-1-phosphate 是一种细胞凋亡 (apoptosis) 抑制剂和细胞存活诱导剂,可以刺激 DNA 合成 (DNA synthesis) 和细胞分裂。C-8 Ceramide-1-phosphate 能够抑制酸性鞘磷脂酶 (SMase) 并刺激 PI3-K,进而产生 PIP3,PIP3 也能抑制酸性 SMase。C-8 Ceramide-1-phosphate 和神经酰胺可以通过激酶和磷酸酶活性在细胞内相互转化,两者的平衡对细胞和组织稳态至关重要。
    C-8 Ceramide-1-phosphate
  • HY-157169
    IBL-302 Inhibitor 98.21%
    IBL-302 (AMU302) 是口服有效的 PIMPI3K/AKT/mTOR 双信号抑制剂,具有抗乳腺癌和成神经细胞瘤活性。IBL-302 在裸鼠异种移植模型中表现出体内效力,抑制曲妥珠单抗 (HY-P9907) 的耐药难题。IBL-302 还能增强常见细胞毒性化疗药物顺铂 (HY-17394)、阿霉素 (HY-15142A) 和依托泊苷 (HY-13629) 的效果。
    IBL-302
  • HY-17635S
    Leniolisib-d5 Inhibitor 98.78%
    Leniolisib-d5是氘代标记的Leniolisib。Leniolisib (CDZ173)是高效,选择性的 PI3Kδ 抑制剂。Leniolisib 有潜力用于免疫缺陷类疾病的研究。
    Leniolisib-d<sub>5</sub>
  • HY-N2590
    Lupenone 99.74%
    Lupenone 是一种具有口服活性的可从 Musa basjoo 中分离出的 lupine 型三萜类化合物。Lupenone Lupenone 可通过 PI3K/Akt/mTORNF-κB 信号通路发挥作用。Lupenone 具有抗炎、抗病毒、抗糖尿病和抗癌活性。
    Lupenone
  • HY-N0728R
    α-Linolenic acid (Standard)

    α-亚麻酸 (Standard)

    Inhibitor
    α-Linolenic acid (Standard)是 α-Linolenic acid 的分析标准品。本产品用于研究及分析应用。α-Linolenic acid 是从紫苏中分离的,人体无法合成的必需脂肪酸。α-Linolenic acid 可通过调节 PI3K/Akt 信号传导来影响血栓形成过程。α-Linolenic acid 具有抗心律失常的特性,并且与心血管疾病和癌症等有关。
    α-Linolenic acid (Standard)
  • HY-118521
    AS-041164 Inhibitor 99.02%
    AS-041164 是一种有效的,选择性的,具有口服活性的 PI3Kγ 亚型抑制剂,IC50 为 70 nM。AS-041164 对 PI3KαPI3KβPI3Kδ 的活性较低 (IC50 分别为 240 nM,1.45 μM 和 1.70 μM)。AS-041164 具有抗炎作用。
    AS-041164
  • HY-112172
    Tenalisib R Enantiomer 99.63%
    Tenalisib R Enantiomer (RP6530 R Enantiomer) 是 Tenalisib 的 R 对映体。Tenalisib 是高效,选择性的 PI3KδPI3Kγ 抑制剂,IC50 值分别为 25 和 33 nM。
    Tenalisib R Enantiomer
  • HY-150019
    PI3K-IN-36 Inhibitor 98.76%
    PI3K-IN-36 (compound A36) 是一种有效的 PI3K 抑制剂。PI3K-IN-36 可用于滤泡性淋巴瘤 (FL) 的研究。
    PI3K-IN-36
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.