1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-15097
    Myricetin

    杨梅素

    98.42%
    Myricetin是常见的植物来源的类黄酮,具有广泛的活性,包括强抗氧化,抗癌,抗糖尿病和抗炎活性。
    Myricetin
  • HY-N0776
    Isorhamnetin

    异鼠李素

    Inhibitor 99.94%
    Isorhamnetin 是从中草药沙棘 (Hippophae rhamnoides L.) 中提取的类黄酮化合物。Isorhamnetin 可通过直接抑制 MEK1PI3K 来抑制皮肤癌。
    Isorhamnetin
  • HY-156681
    Tersolisib Inhibitor 99.63%
    STX-478 (化合物 80) 是一种口服有效的、具有血脑屏障透过性的、突变选择性变构 PI3Kα 抑制剂。STX-478 能稳健且持久地使肿瘤消退,可用于癌症的研究。
    Tersolisib
  • HY-100716
    Eganelisib Inhibitor 99.68%
    Eganelisib (IPI549) 是一种有效的选择性 PI3Kγ 抑制剂,IC50 为 16 nM,选择性比其他脂类和蛋白质激酶高出 100 多倍。
    Eganelisib
  • HY-101625
    Recilisib Activator 99.94%
    Recilisib (ON 01210) 是一种辐射防护剂,可以激活细胞中 AKTPI3K 的活性。
    Recilisib
  • HY-10115
    PI-103 Inhibitor 99.82%
    PI-103 是一种有效的 PI3K mTOR 抑制剂,抑制 p110αp110βp110δp110γmTORC1mTORC2IC50 分别为 8 nM,88 nM,48 nM,150 nM,20 nM 和 83 nM。PI-103 还抑制 DNA-PK,IC50 为 2 nM。PI-103 诱导自噬 (autophagy)
    PI-103
  • HY-10297
    Omipalisib Inhibitor 99.94%
    Omipalisib (GSK2126458) 是一种口服有效的,高选择性的 PI3K 抑制剂,抑制 p110α/β/δ/γ,mTORC1/2 的活性,Ki 值分别为 0.019 nM/0.13 nM/0.024 nM/0.06 nM 和 0.18 nM/0.3 nM。Omipalisib 具有抗癌活性。
    Omipalisib
  • HY-154848
    UCL-TRO-1938 Activator 99.98%
    UCL-TRO-1938 是一种有效的小分子 PI3Kα 变构激活剂,EC50 值约为 60 μM。UCL-TRO-1938 可以诱导细胞增殖,对缺血再灌注损伤具有心脏保护作用,并能促进神经挤压后的神经再生。
    UCL-TRO-1938
  • HY-13228
    YM-201636 Inhibitor 98.05%
    YM-201636 是高效选择性的 PIKfyve 抑制剂,IC50 值为 33 nM。YM-201636 也抑制 p110α,IC50 为 3.3 μM。YM-201636 可抑制逆转录病毒复制。
    YM-201636
  • HY-110171
    iMDK Inhibitor 99.35%
    iMDK 是一种有效的 PI3K 抑制剂,可抑制生长因子 MDK(也称为中期因子或 MK)。iMDK 与 MEK 抑制剂协同抑制非小细胞肺癌 (NSCLC),而不会伤害正常细胞和小鼠。
    iMDK
  • HY-B0633
    Hyaluronic acid sodium

    透明质酸钠

    Activator ≥98.0%
    Hyaluronic acid sodium (Sodium hyaluronate) 是一种由重复的二糖单元组成的生物聚合物,具有多种用途。Hyaluronic acid sodium 是细胞外基质 (ECM) 的主要成分。Hyaluronic acid sodium 在质膜上合成。Hyaluronic acid sodium 水平升高与消化系统癌症中的肿瘤细胞生长、粘附、迁移、侵袭和血管生成有关。Hyaluronic acid sodium 参与一些生理过程 (包括胚胎形态发生和伤口愈合) 中的组织重塑和快速细胞增殖。Hyaluronic acid sodium 可激活 PI3K-Akt 信号传导。Hyaluronic acid sodium 可作为癌症相关淋巴管生成的调节剂。Hyaluronic acid sodium 还通过促进蛋白水解的 MMP-9 与细胞表面结合或刺激 MMP-9 与细胞表面结合来增强细胞侵袭和血管生成。Hyaluronic acid sodium 可作为丁酸钠的药物递送载体,增强其对乳腺癌细胞系的抗增殖活性。Hyaluronic acid sodium 可用于研究关节疾病、伤口愈合和癌症治疗。
    Hyaluronic acid sodium
  • HY-N0716B
    Berberine sulfate

    黄连素硫酸盐; 小檗碱硫酸盐

    Activator 98.30%
    Berberine sulfate 是从中草药黄连中分离出来的一种生物碱,常用作抗生素。Berberine sulfate 诱导活性氧 (ROS) 生成并抑制 DNA 拓扑异构酶 (topoisomerase)。Berberine sulfate 具有抗肿瘤特性。硫酸盐形式可提高生物利用度。
    Berberine sulfate
  • HY-153306
    Zovegalisib Inhibitor 99.20%
    Zovegalisib (RLY-2608) 是具有口服活性的首个 PI3Ka 选择性变构抑制剂,具备抗肿瘤活性。Zovegalisib 在 PIK3CA 突变的人源移植小鼠模型中能够抑制肿瘤生长,对胰岛素的影响极小。
    Zovegalisib
  • HY-13898
    Taselisib Inhibitor 99.75%
    Taselisib (GDC-0032) 是一种有效的 PI3K 抑制剂,靶向作用于突变PI3KCA。Taselisib 抑制 PI3KαPI3KβPI3KγIC50 分别为 0.29 nM,0.91 nM,0.97 nM。
    Taselisib
  • HY-15346A
    Copanlisib dihydrochloride

    库潘尼西盐酸

    Inhibitor 99.55%
    Copanlisib dihydrochloride (BAY 80-6946 dihydrochloride) 是一种有效的,选择性的和 ATP 竞争性的泛 I 类 PI3K 抑制剂,对 PI3KαPI3KδPI3KβPI3KγIC50 分别为 0.5 nM、0.7 nM、3.7 nM 和 6.4 nM。除 mTOR 外,Copanlisib dihydrochloride 对其他脂质和蛋白激酶的选择性超过 2000 倍。Copanlisib dihydrochloride 具有优异的抗肿瘤活性。
    Copanlisib dihydrochloride
  • HY-12795
    Vps34-IN-1 Inhibitor 99.79%
    Vps34-IN-1 是一种有效的,选择性的 III 类 Vps34 PI3K 抑制剂。Vps34-IN-1 通过重组昆虫细胞表达的 Vps34-Vps15 复合物抑制 PtdIns 的磷酸化,IC50 约为 25 nM。Vps34-IN-1 可以通过降低 T 环和疏水基序的磷酸化来降低 PtdIns(3)P 水平,从而抑制 SGK3 激活。Vps34-IN-1 调节自噬
    Vps34-IN-1
  • HY-151527
    PI3K/Akt/CREB activator 1 Agonist 98.64%
    PI3K/Akt/CREB activator 1 (compound AE-18) 是一种口服有效的 PI3K/Akt/CREB 的激活剂。PI3K/Akt/CREB activator 1 通过 PI3K/Akt/CREB 通路上调脑源性神经营养因子,促进神经元增殖,诱导 Neuro-2a 细胞分化成神经元样形态,加速海马原代神经元轴突-树突极化的建立。PI3K/Akt/CREB activator 1 可用于血管性痴呆 (VaD) 的研究。
    PI3K/Akt/CREB activator 1
  • HY-124719
    hSMG-1 inhibitor 11j Inhibitor 99.82%
    hSMG-1 inhibitor 11j,一种嘧啶衍生物,是有效的和选择性的 hSMG-1 抑制剂,IC50 值为 0.11 nM。hSMG-1 inhibitor 11j 对 hSMG-1 的选择性是 mTOR (IC50=50 nM),PI3Kα (IC50=92/60 nM) 和 CDK1/CDK2 (IC50=32/7.1 μM) 的 455 倍以上。hSMG-1 inhibitor 11j 可用于癌症研究。
    hSMG-1 inhibitor 11j
  • HY-P0093
    Sincalide

    辛卡利特

    Modulator 99.51%
    Sincalide (Cholecystokinin octapeptide, CCK-8) 是一种速效胆囊收缩素 (CCK) 的氨基酸多肽激素类似物,在胆囊造影术中静脉使用。Sincalide 是 CCK 的一个主要生物活性片段,它保留了 CCK 的大部分生物活性。可通过注射促进胆囊收缩并帮助诊断胆囊和胰腺疾病。其增加胆汁的分泌,使胆囊收缩并使 Oddi 的括约肌松弛,从而使胆汁排入十二指肠。
    Sincalide
  • HY-D0254
    Gallein

    茜素紫

    ≥98.0%
    Gallein 是一种 Gβγ 亚基信号抑制剂,可以干扰 Gβγ 亚基与 PI3Kγ 的相互作用,调节血小板功能,具有抗肿瘤活性。
    Gallein
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.