1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-151137
    HSP90/mTOR-IN-1 Inhibitor
    HSP90/mTOR-IN-1 是一种有效的 Hsp90mTOR 抑制剂,IC50 分别为 69 nM 和 29 nM。HSP90/mTOR-IN-1 通过过度激活PI3K/AKT/mTOR 通路抑制 SW780 细胞增殖。HSP90/mTOR-IN-1 通过对 HSP90mTOR 的选择性抑制来诱导细胞凋亡 (apoptosis) 和细胞自噬 (autophagy)。HSP90/mTOR-IN-1 在异种移植小鼠体内也表现出良好的抗肿瘤活性。HSP90/mTOR-IN-1 可用于膀胱癌的研究。
    HSP90/mTOR-IN-1
  • HY-139142A
    Simufilam dihydrochloride Inhibitor
    Simufilam dihydrochloride (PTI-125 dihydrochloride) 是一种口服活性 FLNA 调节剂。Simufilam dihydrochloride 恢复 NMDAR 信号传导和 Arc 表达。Simufilam dihydrochloride 通过恢复 FLNA 的正常构象抑制过度活跃的 mTOR 信号传导,改善胰岛素敏感性,减少 Aβ42 引发的神经炎症和 tau 蛋白过度磷酸化。Simufilam dihydrochloride 可用于阿尔茨海默症的研究。
    Simufilam dihydrochloride
  • HY-W130610R
    Stearamide (Standard)

    硬脂酰胺 (Standard)

    Activator
    Stearamide (Standard)是 Stearamide 的分析标准品。本产品用于研究及分析应用。Stearamide 是一种初级脂肪酸酰胺。Stearamide 具有细胞毒性和鱼类毒性。
    Stearamide (Standard)
  • HY-B1232A
    Metyrapone Tartrate Modulator
    Metyrapone (Su-4885) Tartrate 是一种有效且具有口服活性的 11β-羟化酶 (11β-hydroxylase) 抑制剂,可抑制醛固酮 (aldosterone) 的产生,也是一种细胞自噬 (autophagy) 激活剂。Metyrapone Tartrate 能抑制内源性肾上腺皮质激素的合成,也会影响行为和情绪。此外,Metyrapone Tartrate 可通过下调 mTOR 通路增加自噬过程的效率,也能与恶臭假单胞菌 (Pseudomonas putida) 细胞色素 P-450 (CYP450) 相互作用。Metyrapone Tartrate 可用于研究库兴氏综合征 (Cushing's syndrome) 和抑郁症。
    Metyrapone Tartrate
  • HY-B0725A
    Doxepin

    多塞平

    Doxepin 是作为三环类抗抑郁药,可抑制血清素和去甲肾上腺素的再摄取。Doxepin 对特应性皮炎、慢性荨麻疹有研究作用,能改善认知过程,保护中枢神经系统。Doxepin 也被认为是抗氧化应激的保护因子。
    Doxepin
  • HY-128483R
    Fusaric acid (Standard)

    萎蔫酸 (Standard)

    Inhibitor
    Fusaric acid (Standard) 是 Fusaric acid (HY-128483) 的分析标准品。本产品用于研究及分析应用。Fusaric acid 是一种口服有效的多通路抑制剂,具有诱导氧化应激和凋亡 (apoptosis) 的活性。Fusaric acid 可螯合二价金属阳离子、损伤线粒体膜结构,激活 Caspase-3/7、-8、-9 等凋亡相关蛋白酶。Fusaric acid 还调节 Bax/Bcl-2 蛋白,抑制 NF-κBTGF-β1/SMADsPI3K/AKT/mTOR 等纤维化相关信号通路,减少胶原沉积。Fusaric acid 也是一种多巴胺 β-羟化酶 (dopamine β-hydroxylase) 抑制剂,可降低脑、心脏、脾脏和肾上腺中去甲肾上腺素和肾上腺素的内源性水平。Fusaric acid 可在心脏疾病中发挥心肌纤维化、改善心脏肥厚的作用,还能够用于食管癌、肝癌等研究。
    Fusaric acid (Standard)
  • HY-168884
    AV457 Inhibitor
    AV457 是一种有效且选择性的 mTOR 抑制剂。AV457 可抑制多囊肾病 (PKD) 类器官中的囊肿生长。AV457 可降低 P-s6、P-p70s6 的蛋白质表达,但不会降低 P-AKT 的蛋白质表达。
    AV457
  • HY-139832
    MCX 28 Inhibitor
    MCX 28 是一种 PI3K/mTOR/PIM 抑制剂,显示出较低的纳摩尔活性。
    MCX 28
  • HY-161509
    PT-88 Inhibitor
    PT-88 是一种高选择性的 mTOR (哺乳动物雷帕霉素靶蛋白) 抑制剂 (IC50=1.2 nM)。PT-88 能够同时抑制 mTORC1mTORC2 两个复合体,这两个复合体都是 mTOR 蛋白激酶的活性形式,与细胞的生长,增殖和存活密切相关。PT-88 可以用于研究 mTOR 在肿瘤发生和发展中的作用,特别是针对乳腺癌的治疗研究。
    PT-88
  • HY-N0837R
    Veratramine (Standard)

    黎芦碱 (Standard)

    Inhibitor
    Veratramine (NSC17821; NSC23880) (Standard) 是 Veratramine (HY-N0837) 的分析标准品。本产品用于研究及分析应用。Veratramine (NSC17821; NSC23880) 是一种口服有效的 PI3K/Akt/mTOR 信号通路抑制剂及 SIGMAR1 调节剂。Veratramine 诱导肿瘤细胞自噬性凋亡 (autophagy),阻滞细胞周期于 G0/G1 期,并抑制上皮-间质转化 (EMT) 相关蛋白减少肿瘤迁移。Veratramine 通过抑制 SIGMAR1 与 NMDAR 结合及 NMDAR Ser896 位点磷酸化,减轻神经病变模型中脊髓和坐骨神经病理损伤。Veratramine 具有抗肿瘤增殖、诱导凋亡 (apoptosis、抑制炎症及神经保护活性,可用于肝癌、骨肉瘤等癌症及糖尿病周围神经病变的研究。
    Veratramine (Standard)
  • HY-128027
    eCF309 Inhibitor 98.2%
    eCF309 是一种强效且高选择性的 mTOR 抑制剂,IC50 为 15 nM。eCF309 比 PI3K 具有更高的选择性。eCF309 可用于乳腺癌和前列腺癌的研究。
    eCF309
  • HY-147913
    PI3K/Akt/mTOR-IN-3 Inhibitor
    PI3K/Akt/mTOR-IN-3 (compound 3d) 是一种有效的 PI3K/Akt/mTOR 抑制剂。PI3K/Akt/mTOR-IN-3 对 MCF-7、HeLa 和 HepG2 细胞均有抑制作用,IC50 值分别为 0.77、1.23 和 4.57 μM。PI3K/Akt/mTOR-IN-3 在 4 μM浓度下可抑制 MCF-7 和 HeLa 细胞的迁移。PI3K/Akt/mTOR-IN-3 诱导细胞凋亡 (apoptosis) 和 S 期阻滞。
    PI3K/Akt/mTOR-IN-3
  • HY-B0627A
    Metformin (glycinate) Inhibitor
    Metformin (1,1-Dimethylbiguanide) glycinate 抑制肝脏中的线粒体呼吸链,导致 AMPK 活化,增强胰岛素敏感性,可用于 2 型糖尿病的研究。Metformin glycinate 也抑制肝脏缺血/再灌注损伤引起的肝脏氧化应激、亚硝化应激、炎症和细胞凋亡 (apoptosis)。此外,Metformin glycinate 还通过激活 AMPK 和抑制 mTOR 信号通路,调节自噬相关蛋白的表达,从而诱导肿瘤细胞自噬 (autophagy) 并抑制体外和体内肾细胞癌生长。
    Metformin (glycinate)
  • HY-144687
    ATM Inhibitor-4 Inhibitor
    ATM Inhibitor -4 (化合物 39) 是一种强效的选择性 ATM 抑制剂,其 IC50 为 0.32 nM。ATM Inhibitor-4 对 PI3K 激酶家族有较强的抑制作用。ATM Inhibitor-4 在 1 μM 时能完全抑制 mTORATM Inhibitor-4 具有良好的代谢稳定性。
    ATM Inhibitor-4
  • HY-146016
    PI3K/mTOR Inhibitor-5 Inhibitor
    PI3K/mTOR Inhibitor-5 (compound 19a) 是一种有效的 PI3KmTOR 双抑制剂,其 IC50 值分别为 86.9 nM 和 14.6 nM。
    PI3K/mTOR Inhibitor-5
  • HY-N0486S10
    L-Leucine-18O2

    L-亮氨酸 18O2

    Activator
    L-Leucine-18O2是带有 18O 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-<sup>18</sup>O<sub>2</sub>
  • HY-154910
    CC214-1 Inhibitor 98.49%
    CC214-1 是一种潜在有效的 mTOR 抑制剂,可诱导自噬 (autophagy),IC50 为 0.002 μM。 CC214-1 被证明可作为体外工具化合物用于探索 mTOR 激酶生物学。 CC214-1 可用于胶质母细胞瘤研究。
    CC214-1
  • HY-N0486S6
    L-Leucine-2-13C,15N

    L-亮氨酸 2-13C,15N

    Activator
    L-Leucine-2-13C,15N 是带有 13C 标记和 15N 标记的 L-Leucine。L-Leucine 是一种必需的支链氨基酸 (BCAA),可激活 mTOR 信号通路。
    L-Leucine-2-<sup>13</sup>C,<sup>15</sup>N
  • HY-163511
    PI3K/Akt/mTOR-IN-4 Inhibitor
    PI3K/Akt/mTOR-IN-4 (compound 4r) 是一种有效的 PI3K/Akt/mTOR 和微管蛋白聚合 (tubulin polymerization) 抑制剂。PI3K/Akt/mTOR-IN-4 诱导细胞凋亡 (apoptosis) 和细胞周期停滞在 G2/M 期。PI3K/Akt/mTOR-IN-4 会降低p-PI3K、p-Akt、p-mTOR 和 β-微管蛋白的表达。
    PI3K/Akt/mTOR-IN-4
  • HY-161856
    Antifungal agent 106 Inhibitor
    Antifungal agent 106 (Compound Z31) 是一种苯甲酸衍生物,是针对 Monilinia fructicola 的潜在杀菌剂。Antifungal agent 106 具有抗真菌活性,其 EC50 值为 11.8 mg/L。Antifungal agent 106 通过破坏细胞膜的完整性,导致膜通透性增加和细胞内电解质释放,来影响菌丝正常生长。Antifungal agent 106 可用于石果褐腐病相关研究。
    Antifungal agent 106
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.