1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K (磷脂酰肌醇3-激酶)

Phosphoinositide 3-kinase

PI3K(磷酸肌醇 3-激酶)通过肌醇脂质磷脂酰肌醇 4,5-二磷酸 (PI(4,5)P2) 的磷酸化,形成第二信使分子磷脂酰肌醇 (3,4,5)-三磷酸 (PI(3,4,5)P3),后者募集并激活含有 pleckstrin 同源域的蛋白质,从而引发对增殖、存活和迁移至关重要的下游信号传导事件。I 类 PI3K 酶由四种不同的催化异构体组成,即 PI3Kα、PI3Kβ、PI3Kδ 和 PI3Kγ。

PI3K 酶主要有三类,其中 IA 类与癌症密切相关。IA 类 PI3K 是异二聚脂质激酶,由催化亚基(p110α、p110β 或 p110δ;分别由 PIK3CAPIK3CBPIK3CD 基因编码)和调节亚基 (p85) 组成。

PI3K 通路在许多生物过程中起重要作用,包括细胞周期进程、细胞生长、存活、肌动蛋白重排和迁移以及细胞内囊泡运输。

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-12895
    SKI V Inhibitor 98.95%
    SKI V 是一种非竞争性的,有效的非脂质鞘氨醇激酶 (SPHK; SK) 抑制剂,对 GST-hSK 的 IC50 为 2 μM。 SKI V 有效抑制 PI3K,对 hPI3k 的 IC50 为 6 μM。SKI V 减少有丝分裂的第二信使鞘氨醇-1-磷酸 (S1P) 的形成。SKI V 诱导细胞凋亡 (apoptosis) 并具有抗肿瘤活性。
    SKI V
  • HY-15280
    GSK2292767 Inhibitor 98.89%
    GSK2292767 是一种有效和选择性的 PI3Kδ 的抑制剂,pIC50 值为 10.1。GSK2292767 的选择性是其他 PI3K 亚型的 500 倍以上。GSK2292767 可用于呼吸系统疾病的研究。
    GSK2292767
  • HY-N0728S
    α-Linolenic acid-d5

    α-亚麻酸 d5

    Inhibitor
    α-Linolenic acid-d5 是 α-Linolenic acid 的氘代物。α-Linolenic acid 是从种子油中分离的,人体无法合成的必需脂肪酸。α-Linolenic acid 可通过调节 PI3K/Akt 信号传导来影响血栓形成过程。α-Linolenic acid 具有抗心律失常的特性,并且与心血管疾病和癌症等有关。
    α-Linolenic acid-d<sub>5</sub>
  • HY-12338
    ON 146040 Inhibitor
    ON 146040 是一种有效的 PI3KαPI3Kδ 抑制剂,IC50 分别约为 14 和 20 nM。ON 146040 也抑制 Abl1 (IC50<150 nM)。
    ON 146040
  • HY-15244A
    Alpelisib hydrochloride Inhibitor
    Alpelisib hydrochloride (BYL-719 hydrochloride) 是有效,具有口服活性的,选择性的 PI3Kα 抑制剂,抑制 p110α/p110γ/p110δ/p110βIC50 分别为 5 nM,250 nM,290 nM,1200 nM。Alpelisib hydrochloride (BYL-719 hydrochloride) 具有抗肿瘤活性。
    Alpelisib hydrochloride
  • HY-135827A
    Roginolisib hemifumarate Inhibitor 99.80%
    Roginolisib (MSC2360844) hemifumarate 是一种有效的,具有口服活性的选择性 PI3Kδ 抑制剂,IC50为 145 nM。Roginolisib hemifumarate 对一组 278 种其他激酶显示出高度选择性。
    Roginolisib hemifumarate
  • HY-P0118
    Disitertide Inhibitor
    Disitertide (P144) 是转化生长因子 TGFβ1 的多肽抑制剂,特异性的阻断其与受体间的相互作用。Disitertide (P144) 也是PI3K 的抑制剂和凋亡 (apoptosis) 诱导剂。
    Disitertide
  • HY-109068A
    Parsaclisib hydrochloride Inhibitor
    Parsaclisib hydrochloride (INCB050465 hydrochloride) 是一种有效,选择性和具有口服活性的 PI3Kδ 抑制剂,IC50 值为 1 nM。Parsaclisib hydrochloride 相对于其他 PI3K I 类同工型的选择性约为 20000 倍。Parsaclisib hydrochloride 可用于研究复发或难治性 B 细胞恶性肿瘤。
    Parsaclisib hydrochloride
  • HY-133124
    PARP/PI3K-IN-1 Inhibitor 99.43%
    PARP/PI3K-IN-1 (compound 15) 是一种有效的 PARP/PI3K 抑制剂,对 PARP-1,PARP-2,PI3KαPI3KβPI3KδPI3KγpIC50 值分别为 8.22、8.44、8.25、6.54、8.13、6.08。PARP/PI3K-IN-1 是针对多种肿瘤疾病的高效抗癌化合物。
    PARP/PI3K-IN-1
  • HY-101921
    PI3Kδ-IN-1 Inhibitor 99.60%
    PI3Kδ-IN-1 是高效,选择性的 PI3Kδ 抑制剂,IC50 为 1.7 nM。
    PI3Kδ-IN-1
  • HY-101517
    PI3K-IN-2 Inhibitor 99.62%
    PI3K-IN-2 (compound 10) 是一种口服有效的 PI3Kβ 抑制剂 (IC50=7.1/8.6 nM),与 PI3Kσ、PI3Kγ 相比 (IC50=13/190 nM),选择性更好。
    PI3K-IN-2
  • HY-131345
    PI3Kα-IN-4 Inhibitor 99.76%
    PI3Kα-IN-4 是一种有效的,选择性和具有口服活性的 PI3Kα 抑制剂,IC50 值为 1.8 nM。PI3Kα-IN-4 具有抗肿瘤活性。
    PI3Kα-IN-4
  • HY-153120A
    PI3K/mTOR Inhibitor-13 sodium Inhibitor 98.13%
    PI3K/mTOR Inhibitor-13 sodium 是一种具有口服活性的磷酸肌醇 3-激酶 (PI3K) 和 mTOR 激酶双重抑制剂。PI3K/mTOR Inhibitor-13 sodium 在性疾病、实体瘤和特发性肺纤维化 (IPF) 中有潜在应用。
    PI3K/mTOR Inhibitor-13 sodium
  • HY-155066
    FD274 Inhibitor 99.45%
    FD274 是一种高效的 PI3K/mTOR 双重抑制剂,对 PI3Kα/β/γ/δ 和 mTORIC50 分别为 0.65 nM、1.57 nM、0.65 nM、0.42 nM 和 2.03 nM。 FD274 对 AML 细胞系 (HL-60 和 MOLM-16) 具有显着的抗增殖作用。 FD274 在 HL-60 异种移植模型中表现出剂量依赖性的肿瘤生长抑制作用。 FD274具有用于急性髓系白血病研究的潜力。
    FD274
  • HY-109633
    PI3K-IN-18 Inhibitor ≥99.0%
    PI3K-IN-18 (Compound 1) 是一种 PI3K 抑制剂,也能够有效的抑制同源酶 mTOR。PI3K-IN-18 对 mTOR 和 PI3K-α 的 IC50 值分别为 49 nM 和 41 nM。
    PI3K-IN-18
  • HY-103030
    PI3K-IN-32 Inhibitor 99.7%
    PI3K-IN-32 (compound 35) 是一种有效的 PI3K p110α 抑制剂,pIC50 为 6.85。
    PI3K-IN-32
  • HY-161366
    OMS14 Inhibitor 99.09%
    OMS14 对磷酸肌醇 3-激酶 γ (PI3Kγ) 和 PIK3CD/PIK3R1 有抑制作用,在 100 μM 时可抑制 19% PI3Kγ 和 65% PIK3CD/PIK3R1 活性。OMS14 对多种癌细胞表现出抗癌功效。
    OMS14
  • HY-169212
    I194496 Inhibitor 98.52%
    I194496 是一种有效的 cystathionine γ-lyase (CSE) 抑制剂,IC50 值为 0.79 mM。I194496 可以通过双靶向 PI3K/AktRas/Raf/ERK 通路抑制人 TNBC 细胞的生长,并通过下调 Anxa2/STAT3VEGF/FAK/Paxillin 信号通路抑制人 TNBC 细胞的转移。
    I194496
  • HY-100694
    GS-9901 Inhibitor 99.97%
    GS-9901 是一种高选择性、具有口服活性的 PI3Kδ 抑制剂,IC50 为 1 nM。GS-9901 对 PI3Kα (IC50 为 750 nM)、PI3Kβ (IC50 为 100 nM) 和 PI3Kγ (IC50 为 190 nM) 的选择性均为 100 倍以上。GS-9901 可用于类风湿性关节炎的研究。
    GS-9901
  • HY-13026S
    Idelalisib-d5

    艾代拉里斯 d5

    Inhibitor 98.35%
    Idelalisib-d5 是 Idelalisib 的一种氘代化合物。Idelalisib 是一种口服有效的高选择性 p110δ 抑制剂。
    Idelalisib-d<sub>5</sub>
目录号 产品名 / 同用名 应用 反应物种

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.