1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR(哺乳动物雷帕霉素靶蛋白)是一种由人类 mTOR 基因编码的蛋白质。mTOR 是一种丝氨酸/苏氨酸蛋白激酶,可调节细胞生长、细胞增殖、细胞运动、细胞存活、蛋白质合成和转录。mTOR 属于磷脂酰肌醇 3-激酶相关激酶蛋白家族。mTOR 整合上游通路的输入,包括生长因子和氨基酸。mTOR 还能感知细胞营养、氧气和能量水平。mTOR 通路在人类疾病中失调,例如糖尿病、肥胖症、抑郁症和某些癌症。雷帕霉素通过与其细胞内受体 FKBP12 结合来抑制 mTOR。FKBP12-雷帕霉素复合物直接与 mTOR 的 FKBP12-雷帕霉素结合 (FRB) 域结合,从而抑制其活性。

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-10812
    GNE-490 Inhibitor
    GNE-490 是一种 (thienopyrimidin-2-yl)aminopyrimidine,一种有效的泛 PI3K 抑制剂,对 PI3Kα、PI3Kβ、PI3Kδ 和 PI3KγIC50 分别为 3.5 nM、25 nM、5.2 nM、15 nM。GNE-490 对 mTOR 具有 >200 倍的选择性 (IC50=750 nM)。GNE-490 显示出对 MCF7.1 乳腺癌异种移植模型有抑制功效。
    GNE-490
  • HY-137315
    TML-6 Inhibitor 99.01%
    TML-6 是一种口服有效的姜黄素衍生物,抑制 β-淀粉样前体蛋白和 β-淀粉样蛋白 () 的合成。TML-6 上调 Apo E,抑制 NF-κBmTOR,并增加抗氧化 Nrf2 基因的活性。TML-6 具有用于阿尔茨海默氏病 (AD) 研究的潜力。
    TML-6
  • HY-124036
    DS-7423 Inhibitor 99.75%
    DS-7423 是 PI3KmTOR 的双抑制剂,其对 PI3KαmTORIC50 值分别为15.6 nM 和 34.9 nM。DS-7423 具有抗癌活性。
    DS-7423
  • HY-B1787
    Sulindac sulfone

    舒林酸砜

    Inhibitor 98.10%
    Sulindac sulfone 是一种 mTORC1 通路抑制剂,也是 Sulindac 的代谢产物。Sulindac sulfone 可抑制结肠癌细胞生长并诱导细胞周期停滞。Sulindac sulfone 可用于癌症的研究。
    Sulindac sulfone
  • HY-N4315
    Pomiferin

    橙桑黄酮

    Inhibitor 98.98%
    Pomiferin (NSC 5113) 为 HDACmTOR 的抑制剂,IC50 值分别为 1.05 μM 和 6.2 µM。
    Pomiferin
  • HY-N1163
    Tetrahydroalstonine

    四氢鸭脚木碱

    Activator 99.84%
    Tetrahydroalstonine ((-)-Tetrahydroalstonine) 是一种吲哚生物碱和选择性的 α2-肾上腺素受体拮抗剂。Tetrahydroalstonine 具有一定的神经保护作用,可通过激活 Akt/mTOR 通路调控自噬-溶酶体功能,显著减轻 OGD/R 诱导的原代皮层神经元损伤。
    Tetrahydroalstonine
  • HY-157169
    IBL-302 Inhibitor 98.21%
    IBL-302 (AMU302) 是口服有效的 PIMPI3K/AKT/mTOR 双信号抑制剂,具有抗乳腺癌和成神经细胞瘤活性。IBL-302 在裸鼠异种移植模型中表现出体内效力,抑制曲妥珠单抗 (HY-P9907) 的耐药难题。IBL-302 还能增强常见细胞毒性化疗药物顺铂 (HY-17394)、阿霉素 (HY-15142A) 和依托泊苷 (HY-13629) 的效果。
    IBL-302
  • HY-118712
    mTOR inhibitor WYE-23 Inhibitor 99.00%
    mTOR inhibitor WYE-23 是 mTOR 抑制剂,IC50 为 0.45 nM。mTORPI3Kα 具有选择性,IC50 为 661 nM。mTOR inhibitor WYE-23 具有抗肿瘤活性。
    mTOR inhibitor WYE-23
  • HY-N2590
    Lupenone 99.74%
    Lupenone 是一种具有口服活性的可从 Musa basjoo 中分离出的 lupine 型三萜类化合物。Lupenone Lupenone 可通过 PI3K/Akt/mTORNF-κB 信号通路发挥作用。Lupenone 具有抗炎、抗病毒、抗糖尿病和抗癌活性。
    Lupenone
  • HY-10218S
    Everolimus-d4

    依维莫司 d4

    Inhibitor 98.74%
    Everolimus-d4 是 Everolimus 的氘代物。Everolimus (RAD001) 是一种 Rapamycin 的衍生物,也是一种有效的,选择性的和口服活性的 mTOR1 抑制剂。Everolimus 与 FKBP-12 结合可产生免疫抑制复合物。Everolimus 抑制肿瘤细胞增殖并诱导细胞凋亡 (apoptosis) 和自噬 (autophagy)。Everolimus 具有有效的免疫抑制和抗癌活性。
    Everolimus-d<sub>4</sub>
  • HY-10218R
    Everolimus (Standard)

    依维莫司 (标准品)

    Inhibitor
    Everolimus (Standard) 是 Everolimus 的分析标准品。本产品用于研究及分析应用。 Everolimus (RAD001) 是一种雷帕霉素 (Rapamycin; HY-10219) 的衍生物,也是一种有效的,选择性的和口服活性的 mTOR1 抑制剂。Everolimus 与 FKBP-12 结合可产生免疫抑制复合物。Everolimus 抑制肿瘤细胞增殖并诱导细胞凋亡 (apoptosis) 和自噬 (autophagy)。Everolimus 具有有效的免疫抑制和抗癌活性。
    Everolimus (Standard)
  • HY-141805
    MHY-1685 Inhibitor 99.84%
    MHY-1685 是一个新的 mTOR 抑制剂,为改善基于 hCSC 的心肌再生提供了机会。
    MHY-1685
  • HY-125927
    8-Aminoadenosine

    8-氨基腺苷

    Inhibitor 99.94%
    8-Aminoadenosine (8-NH2-Ado) 是一种 RNA 导向的核苷类似物,可降低细胞 ATP 水平并抑制 mRNA 合成。8-Aminoadenosine 阻断 Akt/mTOR 信号,并诱导 p53 非依赖性的自噬和细胞凋亡。8-Aminoadenosine 具有抗肿瘤活性。
    8-Aminoadenosine
  • HY-N10303
    Withangulatin A Inhibitor 99.76%
    Withangulatin A 是 COX-2 的抑制剂。Withangulatin A 可抑制 MAPKNF-κBAkt/mTOR/p70S6K 通路,具有抗肿瘤、抗炎和杀锥虫活性。
    Withangulatin A
  • HY-W654330
    Pyraclostrobin-d6

    吡唑醚菌酯-d6

    Pyraclostrobin-d6 是氘代标记的 Pyraclostrobin (HY-N6626)。
    Pyraclostrobin-d<sub>6</sub>
  • HY-169960
    2DII Inhibitor 98.92%
    2DII 是一种有效且选择性的 mTORC2 抑制剂。2DII 选择性地结合 mSin1 PH 结构域并降低 AKT1 的磷酸化表达。
    2DII
  • HY-111065
    OXA-01 Inhibitor
    OXA-01 是有效的 mTORC1mTORC2 抑制剂,其 IC50 值分别为 29 nM 和 7 nM。
    OXA-01
  • HY-N3628
    Coronarin A Inhibitor ≥98.0%
    Coronarin A 是一种具有口服活性的天然物,可抑制 mTORC1S6K1 增加 IRS1 活性。Coronarin A 具有抗炎活性,也可用于糖尿病的研究。
    Coronarin A
  • HY-153120A
    PI3K/mTOR Inhibitor-13 sodium Inhibitor 98.13%
    PI3K/mTOR Inhibitor-13 sodium 是一种具有口服活性的磷酸肌醇 3-激酶 (PI3K) 和 mTOR 激酶双重抑制剂。PI3K/mTOR Inhibitor-13 sodium 在性疾病、实体瘤和特发性肺纤维化 (IPF) 中有潜在应用。
    PI3K/mTOR Inhibitor-13 sodium
  • HY-155066
    FD274 Inhibitor 99.45%
    FD274 是一种高效的 PI3K/mTOR 双重抑制剂,对 PI3Kα/β/γ/δ 和 mTORIC50 分别为 0.65 nM、1.57 nM、0.65 nM、0.42 nM 和 2.03 nM。 FD274 对 AML 细胞系 (HL-60 和 MOLM-16) 具有显着的抗增殖作用。 FD274 在 HL-60 异种移植模型中表现出剂量依赖性的肿瘤生长抑制作用。 FD274具有用于急性髓系白血病研究的潜力。
    FD274
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.