1. Academic Validation
  2. ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress

ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress

  • Sci Rep. 2024 Jan 4;14(1):560. doi: 10.1038/s41598-023-51079-z.
Srishti Dutta Gupta 1 Malancha Ta 2
Affiliations

Affiliations

  • 1 Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India.
  • 2 Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India. malancha.ta@iiserkol.ac.in.
Abstract

Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.

Figures
Products
Inhibitors & Agonists
Other Products