1. Academic Validation
  2. Recombinant human insulin-like growth factor-binding protein-5 stimulates bone formation parameters in vitro and in vivo

Recombinant human insulin-like growth factor-binding protein-5 stimulates bone formation parameters in vitro and in vivo

  • Endocrinology. 1999 Oct;140(10):4699-705. doi: 10.1210/endo.140.10.7081.
C Richman 1 D J Baylink K Lang C Dony S Mohan
Affiliations

Affiliation

  • 1 J.L. Pettis Veterans Administration Medical Center and Loma Linda University, California 92357, USA.
Abstract

Insulin-like growth factor-binding protein-5 (rhIGFBP-5) is stored in bone and stimulates osteoblast cell proliferation in vitro. Bone formation is dependent on the number and activity of osteoblasts. We therefore evaluated the ability of recombinant human (rh) IGFBP-5 to increase osteoblast activity in vitro; both Alkaline Phosphatase (ALP) activity and osteocalcin levels showed a dose-dependent increase. In in vivo time-course studies, daily s.c. administration of 50 microg rhIGFBP-5/day/mouse significantly increased serum osteocalcin levels by day 7, and these levels were sustained through day 21. We further evaluated whether rhIGFBP-5 was as effective as IGF-I. Daily s.c. administration of rhIGFBP-5 (50 microg/day), IGF-I (13 microg/day), or IGF-I plus rhIGFBP-5 complex for 9 days increased serum osteocalcin levels by 58%, 65%, and 81% (P < 0.001 in all) and femoral bone extract ALP activity by 85% (P < 0.001), 29% (P < 0.05), and 13% (P = NS), respectively, and decreased carboxyl-terminal cross-linked telopeptide of type I collagen by 29% (P < 0.05), 20% (P = NS), and 12.5% (P = NS), respectively. One s.c. injection of rhIGFBP-5 (50 microg/mouse) increased serum osteocalcin and bone ALP activity by 21% (P < 0.05) and 27% (P < 0.02), respectively, after 5 days, but did not significantly increase serum IGF-I (1, 6, or 24 h/postinjection), suggesting that the effects of rhIGFBP-5 on bone are not mediated by increasing circulating IGF-I. Our data demonstrate that systemic administration of rhIGFBP-5, either alone or in combination with IGF-I, increases bone formation parameters in vivo.

Figures