1. Academic Validation
  2. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion

Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion

  • J Pharmacol Exp Ther. 2004 Nov;311(2):519-28. doi: 10.1124/jpet.104.070433.
Atsushi Fukunari 1 Ken Okamoto Takeshi Nishino Bryan T Eger Emil F Pai Miho Kamezawa Ichimaro Yamada Norihisa Kato
Affiliations

Affiliation

  • 1 Discovery Technology Laboratory, Pharmaceuticals Research Unit, Mitsubishi Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan. fukunari.atsushi@mb.m-pharma.co.jp
Abstract

Y-700 (1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid) is a newly synthesized inhibitor of xanthine oxidoreductase (XOR). Steady-state kinetics with the bovine milk Enzyme indicated a mixed type inhibition with K(i) and K(i) ' values of 0.6 and 3.2 nM, respectively. Titration experiments showed that Y-700 bound tightly both to the active sulfo-form and to the inactive desulfo-form of the Enzyme with K(d) values of 0.9 and 2.8 nM, respectively. X-ray crystallographic analysis of the enzyme-inhibitor complex revealed that Y-700 closely interacts with the channel leading to the molybdenum-pterin active site but does not directly coordinate to the molybdenum ion. In oxonate-treated rats, orally administered Y-700 (1-10 mg/kg) dose dependently lowered plasma urate levels. At a dose of 10 mg/kg, the hypouricemic action of Y-700 was more potent and of longer duration than that of 4-hydroxypyrazolo(3,4-d)pyrimidine, whereas its action was approximately equivalent to that of 2-(3-cyano-4-isobutoxyphenyl)-4-methyl-5-thiazolecarboxylic acid, a nonpurine inhibitor of XOR. In normal rats, orally administered Y-700 (0.3-3 mg/kg) dose dependently reduced the urinary excretion of urate and allantoin, accompanied by an increase in the excretion of hypoxanthine and xanthine. Y-700 (1 mg/kg) was absorbed rapidly by the oral route with high bioavailability (84.1%). Y-700 was hardly excreted via the kidneys but was mainly cleared via the liver. These results suggest that Y-700 will be a promising candidate for the treatment of hyperuricemia and Other Diseases in which XOR may be involved.

Figures
Products